ImageVerifierCode 换一换
格式:PPT , 页数:11 ,大小:637KB ,
资源ID:990832      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-990832-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2014届中考数学第一轮基础复习 第25讲 平行四边形课件.ppt)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

2014届中考数学第一轮基础复习 第25讲 平行四边形课件.ppt

1、第25讲平行四边形考点1 平行四边形的定义与性质第25讲 考点聚焦定义两组对边分别平行的四边形是平行四边形性质(1)平行四边形的两组对边分别_;(2)平行四边形的两组对边分别_;(3)平行四边形的两组对角分别_;(4)平行四边形的对角线互相_;(5)平行四边形是中心对称图形,它的对称中心是两条对角线的交点总结若一条直线过平行四边形的对角线的交点,那么这条直线被一组对边截下的线段以对角线的交点为对称中心,且这条直线等分平行四边形的面积平行相等相等平分考点聚焦考点2 平行四边形的判定第25讲 考点聚焦序号方法1定义法2两组对角分别_的四边形是平行四边形3两组对边分别_的四边形是平行四边形4一组对边

2、平行且_的四边形是平行四边形5对角线_的四边形是平行四边形相等相等相等互相平分考点3 平行四边形的面积第25讲 考点聚焦平行四边形的面积平行四边形的面积底 高拓展同底(等底)等高(同高)的平行四边形面积相等两条平行线间距离在两条平行线中一条直线上任意一点到另一条直线上的距离叫做两条平行线间的距离推论夹在两条平行线间的平行线段_相等 类型之二 平行四边形的性质命题角度:1.平行四边形对边的特点;2.平行四边形对角的特点;3.平行四边形对角线的特点第25讲 归类示例例1 2013淮安 已知:如图251,在ABCD中,延长AB到点E,使BEAB,连接DE交BC于点F.求证:BEFCDF.图251归类

3、示例第25讲 归类示例解析 先由平行四边形性质,得出CDABBE,ABCD.再由平行线的性质得EBFDCB,结合对顶角性质,即可推出BEFCDF.第25讲 归类示例平行四边形的性质的应用,主要是利用平行四边形的边与边,角与角及对角线之间的特殊关系进行证明或计算第25讲 归类示例 类型之二平行四边形的判定例2 2013泰州 如图252,四边形ABCD中,ADBC,AEAD交BD于点E,CFBC交BD于点F,且AE CF.求证:四边形ABCD是平行四边形解析 由垂直得到EADBCF90,根据AAS可证明RtAEDRtCFB,得到ADBC,根据平行四边形的判定即可证明第25讲 归类示例命题角度:1.从对边判定四边形是平行四边形;2.从对角判定四边形是平行四边形;3.从对角线判定四边形是平行四边形图252第25讲 归类示例证明:ADBC,ADBCBD,AEAD,CFBC,EADFCB90.AE CF,EADFCB(AAS),ADCB.ADBC,四边形ABCD是平行四边形第25讲 归类示例判别一个四边形是不是平行四边形,要根据具体条件灵活选择判别方法凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明,应直接运用平行四边形的性质和判定去解决问题

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1