ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:542KB ,
资源ID:98856      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-98856-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(三轮押题冲刺 2013高考数学基础知识最后一轮拿分测验 空间中的垂直关系 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

三轮押题冲刺 2013高考数学基础知识最后一轮拿分测验 空间中的垂直关系 WORD版含答案.doc

1、 空间中的垂直关系【考点导读】1掌握直线与平面、平面与平面垂直的判定定理和性质定理,并能用它们证明和解决有关问题。2线面垂直是线线垂直与面面垂直的枢纽,要理清楚它们之间的关系,学会互相转化,善于利用转化思想。【基础练习】1“直线垂直于平面内的无数条直线”是“”的 必要 条件。2如果两个平面同时垂直于第三个平面,则这两个平面的位置关系是 平行或相交 。3已知是两个平面,直线若以,中两个为条件,另一个为结论构成三个命题,则其中正确命题的个数是 2 个。4在正方体中,与正方体的一条对角线垂直的面对角线的条数是 6 。5两个平面互相垂直,一条直线和其中一个平面平行,则这条直线和另一个平面的位置关系是

2、平行、相交或在另一个平面内 。6在正方体中,写出过顶点A的一个平面_AB1D1_,使该平面与正方体的12条棱所在的直线所成的角均相等(注:填上你认为正确的一个平面即可,不必考虑所有可能的情况)。【范例导析】例1如图,在四棱锥PABCD中,底面ABCD是正方形,侧棱PD底面ABCD, PD=DC,E是PC的中点,作EFPB交PB于点F.(1)证明PA/平面EDB; (2)证明PB平面EFD;解析:本小题考查直线与平面平行,直线与平面垂直基础知识,考查空间想象能力和推理论证能力. 证明:(1)连结AC,AC交BD于O,连结EO. 底面ABCD是正方形,点O是AC的中点 在中,EO是中位线,PA /

3、 EO 而平面EDB且平面EDB, 所以,PA / 平面EDB(2)PD底面ABCD且底面ABCD,PD=DC,可知是等腰直角三角形,而DE是斜边PC的中线,. 同样由PD底面ABCD,得PDBC.底面ABCD是正方形,有DCBC,BC平面PDC.而平面PDC,. 由和推得平面PBC. 而平面PBC,又且,所以PB平面EFD.例2如图,ABC 为正三角形,EC 平面ABC ,BD CE ,CE CA 2 BD ,M 是EA 的中点,求证:(1)DE DA ;(2)平面BDM 平面ECA ;(3)平面DEA 平面ECA。分析:(1)证明DE DA ,可以通过图形分割,证明DEF DBA。(2)证

4、明面面垂直的关键在于寻找平面内一直线垂直于另一平面。由(1)知DM EA ,取AC 中点N ,连结MN 、NB ,易得四边形MNBD 是矩形。从而证明DM 平面ECA。证明:(1)如图,取EC 中点F ,连结DF。 EC 平面ABC ,BD CE ,得DB 平面ABC 。 DB AB,EC BC。 BD CE ,BD CE FC ,则四边形FCBD 是矩形,DF EC。又BA BC DF , RtDEF RtABD ,所以DE DA。(2)取AC 中点N ,连结MN 、NB , M 是EA 的中点, MN EC。由BD EC ,且BD 平面ABC ,可得四边形MNBD 是矩形,于是DM MN。

5、 DE DA ,M 是EA 的中点, DM EA 又EA MN M , DM 平面ECA ,而DM 平面BDM ,则平面ECA 平面BDM。(3) DM 平面ECA ,DM 平面DEA , 平面DEA 平面ECA。点评:面面垂直的问题常常转化为线面垂直、线线垂直的问题解决。例3如图,直三棱柱ABCA1B1C1 中,AC BC 1,ACB 90,AA1 ,D 是A1B1 中点(1) 求证C1D 平面A1B ;(2)当点F 在BB1 上什么位置时,会使得AB1 平面C1DF ?并证明你的结论。分析:(1)由于C1D 所在平面A1B1C1 垂直平面A1B ,只要证明C1D 垂直交线A1B1 ,由直线

6、与平面垂直判定定理可得C1D 平面A1B。(2)由(1)得C1D AB1 ,只要过D 作AB1 的垂线,它与BB1 的交点即为所求的F 点位置。证明:(1)如图, ABCA1B1C1 是直三棱柱, A1C1 B1C1 1,且A1C1B1 90。又 D 是A1B1 的中点, C1D A1B1 。 AA1 平面A1B1C1 ,C1D 平面A1B1C1 , AA1 C1D , C1D 平面AA1B1B。(2)解:作DE AB1 交AB1 于E ,延长DE 交BB1 于F ,连结C1F ,则AB1 平面C1DF ,点F 即为所求。 C1D 平面AA1BB ,AB1 平面AA1B1B , C1D AB1

7、 又AB1 DF ,DF C1D D , AB1 平面C1DF 。点评:本题(1)的证明中,证得C1D A1B1 后,由ABCA1B1C1 是直三棱柱知平面C1A1B1 平面AA1B1B ,立得C1D 平面AA1B1B。(2)是开放性探索问题,注意采用逆向思维的方法分析问题。备用题如图,边长为2的正方形ABCD中,(1)点是的中点,点是的中点,将分别沿折起,使两点重合于点,求证:(2)当时,求三棱锥的体积变式题如图,在矩形中,是的中点,以为折痕将向上折起,使为,且平面平面求证:;解:在中,在中,平面平面,且交线为,平面平面,【反馈演练】1下列命题中错误的是(3) 。(1)若一直线垂直于一平面,

8、则此直线必垂直于这一平面内所有直线(2)若一平面经过另一平面的垂线,则两个平面互相垂直(3)若一条直线垂直于平面内的一条直线,则此直线垂直于这一平面(4)若平面内的一条直线和这一平面的一条斜线的射影垂直,则它也和这条斜线垂直2设是空间的不同直线或不同平面,且直线不在平面内,下列条件中能保证“若,且”为真命题的是 (填所有正确条件的代号)x为直线,y,z为平面x,y,z为平面x,y为直线,z为平面x,y为平面,z为直线x,y,z为直线3二面角a的平面角为120,在面内,ABa于B,AB=2在平面内,CDa 于D,CD=3,BD=1,M是棱a上的一个动点,则AM+CM的最小值为 。 4已知三棱锥中

9、,顶点在底面的射影是三角形的内心,关于这个三棱锥有三个命题:侧棱;侧棱两两垂直;各侧面与底面所成的二面角相等。其中错误的是 。 5在三棱锥的四个面中,直角三角形最多可以有_4_个。6若的中点到平面的距离为,点到平面的距离为,则点到平面 的距离为_2或14_。7三棱锥中,侧棱两两垂直,底面内一点到三个侧面的距离分别是,那么_7_。8在球面上有四个点P、A、B、C,如果PA、PB、PC两两互相垂直,且PA=PB=PC=a, 那么这个球面的表面积是 . 9命题A:底面为正三角形,且顶点在底面的射影为底面中心的三棱锥是正三棱锥。命题A的等价命题B可以是:底面为正三角形,且 的三棱锥是正三棱锥。答案:侧

10、棱相等(或侧棱与底面所成角相等)10、是两个不同的平面,m、n是平面及之外的两条不同直线.给出四个论断:mn n m 以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题: 。答案:m,n,mn或mn,m,n11已知三棱锥PABC中,PC底面ABC,AB=BC,D、F分别为AC、PC的中点,DEAP于E(1)求证:AP平面BDE; (2)求证:平面BDE平面BDF;(3)若AEEP=12,求截面BEF分三棱锥PABC所成两部分的体积比解: (1)PC底面ABC,BD平面ABC,PCBD由AB=BC,D为AC的中点,得BDAC又PCAC=C,BD平面PAC 又PA平面、PAC,

11、BDPA由已知DEPA,DEBD=D,AP平面BDE (2)由BD平面PAC,DE平面PAC,得BDDE由D、F分别为AC、PC的中点,得DF/AP由已知,DEAP,DEDF. BDDF=D,DE平面BDF又DE平面BDE,平面BDE平面BDF (3)设点E和点A到平面PBC的距离分别为h1和h2则 h1h2=EPAP=23, 故截面BEF分三棱锥PABC所成两部分体积的比为12或21点评:值得注意的是, “截面BEF分三棱锥PABC所成两部分的体积比”并没有说明先后顺序, 因而最终的比值答案一般应为两个,不要犯这种“会而不全”的错误.12在直角梯形ABCD中,A=D=90,ABCD,SD平面ABCD,AB=AD=a,S D=,在线段SA上取一点E(不含端点)使EC=AC,截面CDE与SB交于点F。(1)求证:四边形EFCD为直角梯形;(2)设SB的中点为M,当的值是多少时,能使DMC为直角三角形?请给出证明.解:(1)CDAB,AB平面SAB CD平面SAB面EFCD面SAB=EF,CDEF 又面 平面SAD,又 为直角梯形 (2)当时,为直角三角形 . ,平面平面.在中,为SB中点,.平面平面 为直角三角形。 高考资源网()来源:高考资源网版权所有:高考资源网(www.k s 5 )

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3