ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:125KB ,
资源ID:988361      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-988361-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021-2022高中数学人教版必修2教案:3-2-1直线的点斜式方程 (系列一) WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021-2022高中数学人教版必修2教案:3-2-1直线的点斜式方程 (系列一) WORD版含答案.doc

1、直线的点斜式方程【教学目标】1.掌握由一点和斜率导出直线方程的方法,掌握直线的点斜式方程,了解直线方程的斜截式是点斜式的特例;培养学生思维的严谨性和相互合作意识,注意学生语言表述能力的训练.2.引导学生根据直线这一结论探讨确定一条直线的条件,并会利用探讨出的条件求出直线的方程.培养学生形成严谨的科学态度和求简的数学精神.3.掌握直线方程的点斜式的特征及适用范围,培养和提高学生联系、对应、转化等辩证思维能力.【重点难点】教学重点:引导学生根据直线这一结论探讨确定一条直线的条件,并会利用探讨出的条件求出直线的方程.教学难点:在理解的基础上掌握直线方程的点斜式的特征及适用范围.【课时安排】1课时【教

2、学过程】导入新课方程y=kxb与直线l之间存在着什么样的关系?让学生边回答,教师边适当板书.它们之间存在着一一对应关系,即(1)直线l上任意一点P(x1,y1)的坐标是方程y=kxb的解.(2)(x1,y1)是方程y=kx+b的解点P(x1,y1)在直线l上.这样好像直线能用方程表示,这节课我们就来学习、研究这个问题直线的方程(宣布课题).推进新课新知探究提出问题如果把直线当做结论,那么确定一条直线需要几个条件?如何根据所给条件求出直线的方程?已知直线l的斜率k且l经过点P1(x1,y1),如何求直线l的方程?方程导出的条件是什么?若直线的斜率k不存在,则直线方程怎样表示?k=与y-y1=k(

3、x-x1)表示同一直线吗?已知直线l的斜率k且l经过点(,),如何求直线l的方程?讨论结果:确定一条直线需要两个条件:a.确定一条直线只需知道k、b即可;b.确定一条直线只需知道直线l上两个不同的已知点.设P(x,y)为l上任意一点,由经过两点的直线的斜率公式,得k=,化简,得yy1=k(xx1).方程导出的条件是直线l的斜率k存在.a.x=0;b.x=x1.启发学生回答:方程k=表示的直线l缺少一个点P1(x1,y1),而方程yy1=k(xx1)表示的直线l才是整条直线.y=kx+b.应用示例例1 已知直线l1:y=4x和点P(6,4),过点P引一直线l与l1交于点Q,与x轴正半轴交于点R,

4、当OQR的面积最小时,求直线l的方程.活动:因为直线l过定点P(6,4),所以只要求出点Q的坐标,就能由直线方程的两点式写出直线l的方程.解:因为过点P(6,4)的直线方程为x=6和y4=k(x6),当l的方程为x=6时,OQR的面积为S=72;当l的方程为y4=k(x6)时,有R(,0),Q(,),此时OQR的面积为S=.变形为(S72)k2(964S)k32=0(S72).因为上述方程根的判别式0,所以得S40.当且仅当k=1时,S有最小值40.因此,直线l的方程为y4=(x6),即xy10=0.点评:本例是一道有关函数最值的综合题.如何恰当选取自变量,建立面积函数是解答本题的关键.怎样求

5、这个面积函数的最值,学生可能有困难,教师宜根据学生的实际情况进行启发和指导.变式训练 如图1,要在土地ABCDE上划出一块长方形地面(不改变方向),问如何设计才能使占地面积最大?并求出最大面积(精确到1 m2)(单位:m).图1解:建立如图直角坐标系,在线段AB上任取一点P分别向CD、DE作垂线,划得一矩形土地.AB方程为=1,则设P(x,20-)(0x30),则S矩形=(100-x)80-(20-)=-(x-5)2+6 000+(0x30),当x=5时,y=,即P(5,)时,(S矩形)max=6 017(m2).例2 设ABC的顶点A(1,3),边AB、AC上的中线所在直线的方程分别为x2y

6、1=0,y=1,求ABC中AB、AC各边所在直线的方程.活动:为了搞清ABC中各有关元素的位置状况,我们首先根据已知条件,画出简图3,帮助思考问题.解:如图2,设AC的中点为F,AC边上的中线BF:y=1.图2AB边的中点为E,AB边上中线CE:x2y1=0.设C点坐标为(m,n),则F().又F在AC中线上,则=1,n=-1.又C点在中线CE上,应当满足CE的方程,则m2n1=0.m=3.C点为(3,1).设B点为(a,1),则AB中点E(),即E(,2).又E在AB中线上,则-4+1=0.a=5.B点为(5,1).由两点式,得到AB,AC所在直线的方程AC:xy2=0,AB:x2y7=0.

7、点评:此题思路较为复杂,应使同学们做完后从中领悟到两点:(1)中点分式要灵活应用;(2)如果一个点在直线上,则这点的坐标满足这条直线的方程,这一观念必须牢牢地树立起来.变式训练 已知点M(1,0),N(1,0),点P为直线2x-y-1=0上的动点,则|PM|2+|PN|2的最小值为何?解:P点在直线2x-y-1=0上,设P(x0,2x0-1).|PM|2+|PN|2=10(x0-)2+.最小值为.拓展提升已知直线y=kxk2与以A(0,3)、B(3,0)为端点的线段相交,求实数k的取值范围.图3活动:此题要首先画出图形3,帮助我们找寻思路,仔细研究直线y=kxk2,我们发现它可以变为y2=k(x1),这就可以看出,这是过(1,2)点的一组直线.设这个定点为P(1,2).解:我们设PA的倾斜角为1,PC的倾斜角为,PB的倾斜角为2,且12.则k1=tan1kk2=tan2.又k1=-5,k2=-,则实数k的取值范围是-5k-.课堂小结通过本节学习,要求大家:1.掌握由一点和斜率导出直线方程的方法,掌握直线的点斜式方程,了解直线方程的斜截式是点斜式的特例.2.引导学生根据直线这一结论探讨确定一条直线的条件,并会利用探讨出的条件求出直线的方程.作业习题3.2 A组2、3、5.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3