ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:368KB ,
资源ID:985084      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-985084-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021-2022高中数学人教版必修2教案:2-3-1 直线与平面垂直的判定 (系列一) WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021-2022高中数学人教版必修2教案:2-3-1 直线与平面垂直的判定 (系列一) WORD版含答案.doc

1、第一课时 直线与平面垂直的判定(一)教学目标1知识与技能(1)使学生掌握直线和平面垂直的定义及判定定理;(2)使学生掌握直线和平面所成的角求法;(3)培养学生的几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论.2过程与方法(1)通过教学活动,使学生了解,感受直线和平面垂直的定义的形成过程;(2)探究判定直线与平面垂直的方法.3情态、态度与价值观培养学生学会从“感性认识”到“理性认识”过程中获取新知.(二)教学重点、难点重点:(1)直线与平面垂直的定义和判定定理; (2)直线和平面所成的角.难点:直线与平面垂直判定定理的探究.教学过程教学内容师生互动设计意图新课导入问题:直线和

2、平面平行的判定方法有几种?师投影问题,学生回答.生:可用定义可判断,也可依判定定理判断.复习巩固探索新知一、直线和平面垂直的定义、画法如果直线l与平面内的任意一条直线都垂直,我们说直线l与平面互相垂直,记作l.直线l叫做平面的垂线,平面叫做直线l的垂面.直线与平面垂直时,它们惟一的公共点P叫做垂足.画直线与平面垂直时,通常把直线画成与表不平面的平行四边形的一边垂直,如图. 师:日常生活中我们对直线与平面垂直有很多感性认识,如旗杆与地面,桥柱与水面等,你能举出更多的例子来吗?师:在阳光下观察,直立于地面的旗杆及它在地面的影子,它们的位置关系如何?生:旗杆与地面内任意一条经B的直线垂直.师:那么旗

3、杆所在直线与平面内不经过B点的直线位置关系如何,依据是什么?(图)生:垂直,依据是异面直线垂直的定义.师:你能尝试给线面垂直下定义吗?师:能否将任意直线改为无数条直线?学生找一反例说明.培养学生的几何直观能力使他们在直观感知,操作确认的基础上学会归纳概括结论.探索新知二、直线和平面垂直的判定1试验 如图,过ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触).(1)折痕AD与桌面垂直吗?(2)如何翻折才能使折痕AD与桌面所在平面垂直?2直线与平面垂直的判定定理:一条直线与一个平面内两条相交直线都垂直,则该直线与此平面垂直.思考:能否将直线与平面垂直的判定

4、定理中的“两条相交直线”改为一条直线或两条平行直线?师:下面请同学们准备一块三角形的小纸片,我们一起来做一个实验,(投影问题).学生动手实验,然后回答问题.生:当且仅当折痕AD是BC边上的高时,AD所在直线与桌面所在平面垂直.师:此时AD垂直上的一条直线还是两条直线?生:AD垂直于桌面两条直线,而且这两条直线相交.师:怎么证明?生:折痕ADBC,翻折之后垂直关系不变,即ADCD,ADBD师:直线和平面垂直的判定定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.培养学生的几何直观能力使他们在直观感知,操作确认的基础上学会归纳概括结论.典例剖析例1 如图,已知ab,a,求证:b.

5、证明:在平面内作两条相交直线m、n.因为直线a,根据直线与平面垂直的定义知am,an.又因为ba,所以bm,bn.又因为,m、n是两条相交直线,b.师:要证b,需证b与内任意一条直线的垂直,又ab,问题转化为a与面内任意直线m垂直,这个结论显然成立.学生依图及分析写出证明过程.师:此结论可以直接利用,判定直线和平面垂直.巩固所知识培养学生转化化归能力、书写表达能力.探索新知二、直线和平面所成的角如图,一条直线PA和一个平面相交,但不与这个平面垂直,这条直线叫做这个平面的斜线,斜线的平面的交点A叫做斜足.过斜线上斜足以外的一点向平面引垂线PO,过垂足O和斜足A的直线AO叫做斜线在这个平面上的射影

6、.平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行,或在平面内,我们说它们所成的角是0的角.教师借助多媒体直接讲授,注意直线和平面所成的角是分三种情况定义的.借助多媒体讲授,提高上课效率.典例剖析例2 如图,在正方体ABCD A1B1C1D1中,求A1B和平面A1B1CD所成的角.分析:找出直线A1B在平面A1B1CD内的射影,就可以求出A1B和平面A1B1CD所成的角.解:连结BC1交B1C于点O,连结A1O.设正方体的棱长为a,因为A1B1B1C1, A1B1B1B,所以A1B1平面BCC1B1.所

7、以A1B1BC1.又因为BC1B1C,所以B1C平面A1B1CD.所以A1O为斜线A1B在平面A1B1CD内的射影,BA1O为A1B与平面A1B1CD所成的角.在RtA1BO中,所以,BA1O = 30 因此,直线A1B和平面A1B1CD所成的角为30.师:此题A1是斜足,要求直线A1B与平面A1B1CD所成的角,关键在于过B点作出(找到,面A1B1CD的垂线,作出(找到)了面A1B1CD的垂线,直线A1B在平面A1B1CD内的射影就知道了,怎样过B作平面A1B1CD的垂线呢?生:连结BC1即可.师:能证明吗?学生分析,教师板书,共同完成求解过程.点拔关键点,突破难点,示范书写及解题步骤.随堂

8、练习1如图,在三棱锥VABC中,VA = VC,AB = BC,求证:VBAC.2过ABC所在平面外一点P,作PO,垂足为O,连接PA,PB,PC.(1)若PA= PB = PC,C =90,则点O是AB边的 心.(2)若PA = PB =PC,则点O是ABC的 心.(3)若P APB,PBPC,PBP A,则点O是ABC的 . 心.3两条直线和一个平面所成的角相等,这两条直线一定平行吗?4如图,直四棱柱ABCD ABCD(侧棱与底面垂直的棱柱称为直棱柱)中,底面四边形ABCD满足什么条件时,ACBD?学生独立完成答案:1略2(1)AB边的中点;(2)点O是ABC的外心;(3)点O是ABC的垂

9、心.3不一定平行.4ACBD.巩固所学知识归纳总结1直线和平面垂直的定义判定2直线和平面所成的角定义与解答步骤、完善.3线线垂直线面垂直学生归纳总结教师补充巩固学习成果,使学生逐步养成爱总结,会总结的习惯和能力.课后作业2.7 第一课时 习案学生独立完成强化知识提升能力备选例题例1 如图,在空间四边形ABCD中,AB = AD,CB = CD,M为BD中点,作AOMC,交MC于O求证:AO平面BCD【解析】连结AMAB = AD,CB = CD,M为BD中点BDAM,BDCM又AMCM = M,BD平面ACMAO 平面ACM,BDAO又MCAO,BDMC = M,AO平面貌BCD【评析】本题为

10、了证明AO平面BCD,先证明了平面BCD内的直线垂直于AO所在的平面这一方法具有典型性,即为了证明线与面的垂直,需要转化为线与线的垂直;为了解决线与线的垂直,又需转化为另一个线与面的垂直,再化为新的线线垂直这样互相转化,螺旋式往复,最终使问题得到解决例2 已知棱长为1的正方体ABCD A1B1C1D1中,E是A1B1的中点,求直线AE与平面ABC1D1所成的角的正弦值【解析】取CD的中点F,连接EF交平面ABC1D1于O,连AO由已知正方体,易知EOABC1D1,所以EAO为所求在Rt EOA中, ,sinEAO = 所以直线AE与平面ABC1D1所成的角的正弦值为【评析】求直线和平面所成角的步骤:(1)作作出斜线和平面所成的角;(2)证证明所作或找到的角就是所求的角;(3)求常用解三角形的方法(通常是解由垂线、斜线、射影所组成的直角形)(4)答

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3