1、课题:函数的表示法(二)课 型:新授课教学目标:(1)了解映射的概念及表示方法;(2)掌握求函数解析式的方法:换元法,配凑法,待定系数法,消去法,分段函数的解析式。教学重点:求函数的解析式。教学难点:对函数解析式方法的掌握。教学过程:一、复习准备:1举例初中已经学习过的一些对应,或者日常生活中的一些对应实例:对于任何一个实数a,数轴上都有唯一的点P和它对应;对于坐标平面内任何一个点A,都有唯一的有序实数对(x,y)和它对应;对于任意一个三角形,都有唯一确定的面积和它对应;某影院的某场电影的每一张电影票有唯一确定的座位与它对应;2讨论:函数存在怎样的对应?其对应有何特点?3导入:函数是建立在两个
2、非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,即映射(mapping)。二、讲授新课:(一) 映射的概念教学:定义:一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应为从集合A到集合B的一个映射(mapping)。记作:讨论:映射有哪些对应情况?一对多是映射吗?例1(课本P22例7)以下给出的对应是不是从A到集合B的映射?(1) 集合A=P | P是数轴上的点,集合B=R,对应关系f:数轴上的点与它所代表的实数对应;
3、(2) 集合A=P | P是平面直角坐标系中的点,B= ,对应关系f: 平面直角坐标系中的点与它的坐标对应;(3) 集合A=x | x是三角形,集合B=x | x是圆,对应关系f:每一个三角形都对应它的内切圆;(4) 集合A=x | x是新华中学的班级,集合B=x | x是新华中学的学生,对应关系:每一个班级都对应班里的学生。例2设集合A=a,b,c,B=0,1 ,试问:从A到B的映射一共有几个?并将它们分别表示出来。(二)求函数的解析式:常见的求函数解析式的方法有待定系数法,换元法,配凑法,消去法。例3已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求函数f(x)的解析式。 (待定系数法)例4已知f(2x+1)=3x-2,求函数f(x)的解析式。(配凑法或换元法)例5已知函数f(x)满足,求函数f(x)的解析式。(消去法)例6已知,求函数f(x)的解析式。(三)课堂练习: 1课本P23练习4; 2已知 ,求函数f(x)的解析式。 3已知,求函数f(x)的解析式。 4已知,求函数f(x)的解析式。归纳小结:本节课系统地归纳了映射的概念,并进一步学习了求函数解析式的方法。作业布置:1 课本P24习题1.2B组题3,4;2 阅读P26 材料。课后记:高考资源网w。w-w*k&s%5¥u高考资源网w。w-w*k&s%5¥u