1、浙江省嘉兴市桐乡市高级中学2020届高三数学下学期3月模拟测试试题(含解析)一、选择题(本大题共10小题)1.已知集合,则( )A. B. C. D. 【答案】A【解析】【分析】解方程组得到交点坐标,从而得到结果.【详解】解:,得,故选A【点睛】本题考查交集的概念及运算,考查集合的表示方法,属于基础题.2.已知复数,则对应的点在复平面内位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】利用复数除法运算化简,由此求得对应点所在象限.【详解】依题意,对应点为,在第一象限.故选A.【点睛】本小题主要考查复数除法运算,考查复数对应点的坐标所在象限,属于基础题.
2、3.已知,则,不可能满足的关系是()A. B. C. D. 【答案】C【解析】【分析】根据即可得出,根据,即可判断出结果【详解】;,;,故正确;,故C错误;,故D正确故C【点睛】本题主要考查指数式和对数式的互化,对数的运算,以及基本不等式:和不等式的应用,属于中档题4.函数图象可能是下列哪一个?( )A. B. C. D. 【答案】A【解析】【分析】由排除选项;排除选项;由函数有无数个零点,排除选项,从而可得结果.【详解】由,可排除选项,可排除选项;由可得,即函数有无数个零点,可排除选项,故选A.【点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方
3、向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.5.已知中,角、所对的边分别是,则“”是“”的( )A. 充分不必要条件B. 必要不充分条件C. 既不充分也不必要条件D. 充分必要条件【答案】D【解析】【分析】由大边对大角定理结合充分条件和必要条件的定义判断即可.【详解】中,角、所对的边分别是、,由大边对大角定理知“”“”,“”“”.因此,“” 是“”的充分必要条件.故选:D.【点睛】本题考查充分条件、必要条件的判断,考查三角形的性质等基
4、础知识,考查逻辑推理能力,是基础题6.已知函数的图像的一条对称轴为直线,且,则的最小值为( )A. B. 0C. D. 【答案】D【解析】【分析】运用辅助角公式,化简函数的解析式,由对称轴的方程,求得的值,得出函数的解析式,集合正弦函数的最值,即可求解,得到答案.【详解】由题意,函数为辅助角,由于函数的对称轴的方程为,且,即,解得,所以,又由,所以函数必须取得最大值和最小值,所以可设,所以,当时,的最小值,故选D.【点睛】本题主要考查了正弦函数的图象与性质,其中解答中利用三角恒等变换的公式,化简函数的解析式,合理利用正弦函数的对称性与最值是解答的关键,着重考查了分析问题和解答问题的能力,属于中
5、档试题.7.定义域为R的偶函数满足任意,有,且当时,.若函数至少有三个零点,则的取值范围是( )A. B. C. D. 【答案】B【解析】【分析】由题意可得的周期为,当时,令,则的图像和的图像至少有个交点,画出图像,数形结合,根据,求得的取值范围.【详解】是定义域为R的偶函数,满足任意,令,又,为周期为的偶函数,当时,当,当,作出图像,如下图所示:函数至少有三个零点,则的图像和的图像至少有个交点,若,的图像和的图像只有1个交点,不合题意,所以,的图像和的图像至少有个交点,则有,即,.故选:B.【点睛】本题考查函数周期性及其应用,解题过程中用到了数形结合方法,这也是高考常考的热点问题,属于中档题
6、.8.在直角坐标平面上,点的坐标满足方程,点的坐标满足方程则的取值范围是( )A. B. C. D. 【答案】B【解析】【分析】由点的坐标满足方程,可得在圆上,由坐标满足方程,可得在圆上,则求出两圆内公切线的斜率,利用数形结合可得结果.【详解】点的坐标满足方程,在圆上,在坐标满足方程,在圆上,则作出两圆的图象如图,设两圆内公切线为与,由图可知,设两圆内公切线方程为,则,圆心在内公切线两侧,可得,化为,即,的取值范围,故选B.【点睛】本题主要考查直线的斜率、直线与圆的位置关系以及数形结合思想的应用,属于综合题. 数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要
7、思想方法,尤其在解决选择题、填空题时发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是运用这种方法的关键是正确作出曲线图象,充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解.9.已知点是抛物线的对称轴与准线的交点,点为抛物线的焦点,点在抛物线上且满足,若取得最大值时,点恰好在以为焦点的椭圆上,则椭圆的离心率为( )A. B. C. D. 【答案】B【解析】【分析】设,利用两点间的距离公式求出的表达式,结合基本不等式的性质求出的最大值时的点坐标,结合椭圆的定义以及椭圆的离心率公式求解即可.【详解】设,因为是抛物线的对称轴与准线的交点,点为抛物线的焦点,所以,则,当时,当时,当
8、且仅当时取等号,此时,点在以为焦点的椭圆上,由椭圆的定义得,所以椭圆的离心率,故选B.【点睛】本题主要考查椭圆的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:直接求出,从而求出;构造的齐次式,求出;采用离心率的定义以及圆锥曲线的定义来求解10.设、,数列满足,则( )A. 对于任意,都存在实数,使得恒成立B. 对于任意,都存在实数,使得恒成立C. 对于任意,都存在实数,使得恒成立D. 对于任意,都存在实数,使得恒成立【答案】D【解析】【分析】取,可排除AB;由蛛网图可得数列的单调情况,进而得到要使,只需,由此可得到答案.【详解】取,数列恒
9、单调递增,且不存在最大值,故排除AB选项;由蛛网图可知,存在两个不动点,且,因为当时,数列单调递增,则;当时,数列单调递减,则;所以要使,只需要,故,化简得且.故选:D【点睛】本题考查递推数列的综合运用,考查逻辑推理能力,属于难题二、填空题(本大题共7小题)11.已知单位向量,夹角为,_;的最小值为_【答案】 (1). (2). 【解析】【分析】根据条件可求出,根据进行数量积的运算即可求出的值,并可得出,配方即可求出最小值【详解】,故答案为:【点睛】考查向量数量积的运算及计算公式,单位向量的定义,向量长度的求法,配方求二次函数最值的方法12.已知,则_,_.【答案】 (1). (2). 【解析
10、】【分析】利用两角和的正切公式结合可得出的方程,即可求出的值,然后利用二倍角的正、余弦公式结合弦化切思想求出和的值,进而利用两角差的余弦公式求出的值.【详解】,.故答案为:;.【点睛】本题主要考查三角函数值的计算,考查两角和的正切公式、两角差的余弦公式、二倍角的正弦公式、余弦公式以及弦化切思想的应用,难度不大13.如图是一个几何体的三视图,若它的体积是,则_ ,该几何体的表面积为 _【答案】;【解析】试题分析:如图:此几何体是四棱锥,底面是边长为的正方形,平面平面,并且,所以体积是,解得,四个侧面都是直角三角形,所以计算出边长,表面积是考点:1三视图;2几何体的表面积14.设等差数列的前项和为
11、,若,则_,的最大值是_.【答案】 (1). (2). 【解析】【分析】利用等差数列前项和公式,列出方程组,求出首项和公差的值,利用等差数列的通项公式可求出数列的通项公式,可求出的表达式,然后利用双勾函数的单调性可求出的最大值.【详解】(1)设等差数列公差为,则,解得,所以,数列的通项公式为;(2),令,则且,由双勾函数的单调性可知,函数在时单调递减,在时单调递增,当或时,取得最大值为.故答案为:;.【点睛】本题考查等差数列的通项公式、前项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,是中档题15.四边形中,则的最小值是_.【答案】【解析】【分析】在中利用正弦定理得出,进而可知,当
12、时,取最小值,进而计算出结果.详解】,如图,在中,由正弦定理可得,即,故当时,取到最小值为.故答案为:.【点睛】本题考查解三角形,同时也考查了常见的三角函数值,考查逻辑推理能力与计算能力,属于中档题16.已知正方形边长为,空间中的动点满足,则三棱锥体积的最大值是_.【答案】【解析】【分析】以为原点,为轴,为轴,过作平面的垂线为轴建立空间直角坐标系,设点,根据题中条件得出,进而可求出的最大值,由此能求出三棱锥体积的最大值.【详解】以为原点,为轴,为轴,过作平面的垂线为轴建立空间直角坐标系,则,设点,空间中的动点满足,所以,整理得,当,时,取最大值,所以,三棱锥的体积为.因此,三棱锥体积的最大值为
13、.故答案为:.【点睛】本题考查三棱锥体积的最大值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题17.设函数,当时,记最大值为,则的最小值为_.【答案】【解析】【分析】易知,设,利用绝对值不等式的性质即可得解【详解】,设,令,当时,所以单调递减令,当时,所以单调递增所以当时,则则,即故答案为:.【点睛】本题考查函数最值的求法,考查绝对值不等式的性质,考查转化思想及逻辑推理能力,属于难题三、解答题(本大题共5小题)18.已知函数,将的图象向左移个单位,得到函数的图象.(1)若,求的单调区间;(2)若,的一条对称轴是,求在的值域.【答案】(1)增区间为,减区间为
14、;(2).【解析】【分析】(1)由题意利用三角函数图象变换规律求得的解析式,然后利用余弦函数的单调性,得出结论;(2)由题意利用余弦函数的图象的对称性求得,再根据余弦函数的定义域和值域,得出结论详解】由题意得(1)向左平移个单位得到,增区间:解不等式,解得,减区间:解不等式,解得.综上可得,的单调增区间为,减区间为;(2)由题易知,因为的一条对称轴是,所以,解得,.又因为,所以,即.因为,所以,则,所以在的值域是.【点睛】本题主要考查三角函数图象变换规律,余弦函数图象的对称性,余弦函数的单调性和值域,属于中档题19.如图所示,直角梯形中,四边形为矩形,.(1)求证:平面平面;(2)在线段上是否
15、存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长,若不存在,请说明理由.【答案】(1)见解析;(2)存在,长【解析】【分析】(1)先证面,又因为面,所以平面平面.(2)根据题意建立空间直角坐标系. 列出各点的坐标表示,设,则可得出向量,求出平面的法向量为,利用直线与平面所成角的正弦公式列方程求出或,从而求出线段的长.【详解】解:(1)证明:因为四边形为矩形,.面面又面平面平面(2)取为原点,所在直线为轴,所在直线为轴建立空间直角坐标系.如图所示:则,设,;,设平面的法向量为,不防设.,化简得,解得或;当时,;当时,;综上存在这样的点,线段的长.【点睛】本题考查平面与平面垂直的判定定
16、理的应用,考查利用线面所成角求参数问题,是几何综合题,考查空间想象力以及计算能力.20.正项数列的前n项和Sn满足: (1)求数列的通项公式; (2)令,数列bn前n项和为Tn,证明:对于任意的nN*,都有Tn .【答案】(1)(2)见解析【解析】【详解】(1)因为数列的前项和满足:,所以当时,即解得或,因为数列都是正项,所以,因为,所以,解得或,因为数列都是正项,所以,当时,有,所以,解得,当时,符合所以数列的通项公式,;(2)因为,所以,所以数列的前项和为:,当时,有,所以,所以对于任意,数列的前项和.21.在平面直角坐标系xOy中,已知平行于x轴的动直线l交抛物线C:于点P,点F为C的焦
17、点圆心不在y轴上的圆M与直线l,PF,x轴都相切,设M的轨迹为曲线E(1)求曲线E的方程;(2)若直线与曲线E相切于点,过Q且垂直于的直线为,直线,分别与y轴相交于点A,当线段AB的长度最小时,求s的值【答案】(1),(2)【解析】【分析】根据题意设,可得PF的方程,根据距离即可求出;点Q处的切线的斜率存在,由对称性不妨设,根据导数的几何意义和斜率公式,求,并构造函数,利用导数求出函数的最值【详解】因为抛物线C的方程为,所以F的坐标为,设,因为圆M与x轴、直线l都相切,l平行于x轴,所以圆M的半径为,点,则直线PF的方程为,即,所以,又m,所以,即,所以E的方程为,设,由知,点Q处的切线的斜率
18、存在,由对称性不妨设,由,所以,所以,所以,令,则,由得,由得,所以在区间单调递减,在单调递增,所以当时,取得极小值也是最小值,即AB取得最小值此时【点睛】本题考查了直线和抛物线的位置关系,以及利用导数求函数最值的关系,考查了运算能力和转化能力,属于难题22.已知函数(1)讨论的单调性并指出相应单调区间;(2)若,设是函数的两个极值点,若,且恒成立,求实数k的取值范围【答案】(1)答案见解析(2)【解析】【分析】(1)先对函数进行求导得,对分成和两种情况讨论,从而得到相应的单调区间;(2)对函数求导得,从而有,三个方程中利用得到.将不等式的左边转化成关于的函数,再构造新函数利用导数研究函数的最小值,从而得到的取值范围.【详解】解:(1)由,则,当时,则,故在上单调递减;当时,令,所以在上单调递减,在上单调递增综上所述:当时,在上单调递减;当时,在上单调递减,在上单调递增(2),,由得,解得.设,则,在上单调递减;当时,.,即所求的取值范围为.【点睛】本题考查利用导数研究函数的单调性、最值,考查分类讨论思想和数形结合思想,求解双元问题的常用思路是:通过换元或消元,将双元问题转化为单元问题,然后利用导数研究单变量函数的性质.