ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:115.50KB ,
资源ID:978304      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-978304-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数学百大经典例题——同角三角函数的基本关系式(新课标).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

数学百大经典例题——同角三角函数的基本关系式(新课标).doc

1、1已知某角的一个三角函数值,求该角的其他三角函数值解 sin0角在第三或第四象限(不可能在y轴的负半轴上)(2)若在第四象限,则说明 在解决此类问题时,要注意:(1)尽可能地确定所在的象限,以便确定三角函数值的符号(2)尽可能地避免使用平方关系(在一般情况下只要使用一次)(3)必要时进行讨论 例2 已知sin=m(|m|1),求tg的值(2)当m=1时,的终边在y轴上,tg无意义(3)当在、象限时,cos0当在第、象限时,cos0,说明 (1)在对角的范围进行讨论时,不可遗漏终边在坐标轴上的情况(2)本题在进行讨论时,为什么以cos的符号作为分类的标准,而不按sin的符号(即m的符号)来分类讨

2、论呢?你能找到这里的原因并概括出所用的技巧吗?2三角函数式的化简三角函数式的化简的结果应满足下述要求:(1)函数种类尽可能地少(2)次数尽可能地低(3)项数尽可能地少(4)尽可能地不含分母(5)尽可能地将根号中的因式移到根号外面来化简的总思路是:尽可能地化为同类函数再化简例3 化简sin2tg+cos2ctg+2sincos=seccsc解2 原式=(sin2tg+sincos)+(cos2ctg+sincos)=tg(sin2+cos2)+ctg(sin2+cos2)=tg+ctg=seccsc说明 (1)在解1中,将正切、余切化为正弦、余弦再化简,仍然是循着减少函数种类的思路进行的(2)解

3、2中的逆用公式将sincos用tg表示,较为灵活,解1与解2相比,思路更自然,因而更实用例4 化简:分析 将被开方式配成完全平方式,脱去根号,进行化简3三角恒等式的证明证明三角恒等式的过程,实际上是化异为同的过程,即化去形式上的异,而呈现实质上的同,这个过程,往往是从化简开始的这就是说,在证明三角恒等式时,我们可以从最复杂处开始例5 求证 cos(2sec+tg)(sec-2tg)=2cos-3tg分析 从复杂的左边开始证得右边=2cos-3tg=右边例6 证明恒等式(1)1+3sin2sec4+tg6=sec6(2)(sinA+ secA)3+(cosA+cscA)2=(1+secAcscA

4、)2分析 (1)的左、右两边均较复杂,所以可以从左、右两边同时化简证明 (1)右边-左边=sec6-tg6-3sin2sec4-1=(sec2-tg2)(sec4+sec2tg2+tg2)-3sin2sec4-1=(sec4-2sec2tg2+tg2)-1=(sec2-tg2)2-1=0等式成立=sin2A+cos2A=1故原式成立在解题时,要全面地理解“繁”与“简”的关系实际上,将不同的角化为同角,以减少角的数目,将不同的函数名称,化为同名函数,以减少函数的种类,都是化繁为简,以上两点在三角变换中有着广泛的应用分析1 从右端向左端变形,将“切”化为“弦”,以减少函数的种类分析2 由1+2sinxcosx立即想到(sinx+cosx)2,进而可以约分,达到化简的目的说明 (1)当题目中涉及多种名称的函数时,常常将切、割化为弦(如解法1),或将弦化为切(如解法2)以减少函数的种类(2)要熟悉公式的各种变形,以便迅速地找到解题的突破口,请看下列=sec+tg等式成立说明 以上证明中采用了“1的代换”的技巧,即将1用sec2-tg2代换,可是解题者怎么会想到这种代换的呢?很可能,解题者在采用这种代换时,已经预见到代换后,分子可以因式分解,可以约分,而所有这一切都是建立在熟悉公式的各种变形的基础上的,当然,对不熟练的解题者而言,还有如下的“一般证法”即证明“左边-右边=0”左边=右边

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3