ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:334.50KB ,
资源ID:969578      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-969578-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021-2022学年高中数学人教B版必修5教学教案:1-2 应用举例 (5) WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021-2022学年高中数学人教B版必修5教学教案:1-2 应用举例 (5) WORD版含解析.doc

1、解三角形应用举例一、教学目标 1、知识与技能目标初步运用正弦定理、余弦定理解决某些与测量和几何计算有关的实际问题 2、 过程与方法目标(1)通过解决“测量一个底部不能到达的建筑物的高度”或“测量平面上两个不能到达的地方之间的距离”的问题,初步掌握将实际问题转化为解斜三角形问题的方法;(2)进一步提高应用正弦定理、余弦定理解斜三角形的能力,提高运用数学知识解决实际问题的能力 3、情感、态度与价值观目标(1)通过学生亲自实施对“测量” 问题的解决,体会如何将具体的实际问题转化为抽象的数学问题, 体验问题解决的全过程;(2)发展学生搜集和处理信息的能力、获取新知识的能力、分析解决问题的能力,以及交流

2、与合作的能力,着重学生多元智能的发展。二、教学重点、难点 1、重点是如何将实际问题转化为数学问题,并利用解斜三角形的方法予以解决 2、分析、探究并确定将实际问题转化为数学问题的思路是难点和关键三、教学方法与手段1、教学方法:运用认知建构教学理论和多元智能发展观,在教学中采用自主探究与尝试指导相结合,引导学生通过分析实践、自主探究、合作讨论得出转化(解决)问题的方法2、学习方法:在实践中体验过程,在过程中感受应用,在交流中升华知识。3、教学手段:实际模拟、合作学习、多媒体(投影仪)四、教学过程:(一)检查预习效果:问题1:怎样测量一个底部不能到达的建筑物的高度?问题2:怎样测量地面上两个不能到底

3、的地方之间的距离?问题3:物理问题;问题4: 台风问题。(二)一些术语:仰角和俯角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角,如图所示:坡角和坡度坡面与地平面所成的角度,叫做坡角;坡面的铅直高度和水平宽度的比叫做坡度或者坡比,常用字母i表示。坡比是坡角的正切值。方位角与方向角:方位角:一般指正北方向线顺时针到目标方向线的水平角。方位角的取值范围为0360。如图,点的方位角是。方向角:一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度。如

4、图为南偏西方向(指以正南方向为始边,向正西方向旋转);如图为北偏东方向(指从正北开始向正东方向旋转). 东南方向:指经过目标的射线是正东与正南的夹角平分线.依此可类推西南方向、西北方向等;(三)典型例题:类型一:距离问题例1如图,某公司要在A、B两地连线上的定点C处建造广告牌CD,其中D为顶端,AC长35米,CB长80米,设点A、B在同一水平面上,从A和B看D的仰角分别为和(1)设计中CD是铅垂方向,若要求2,问CD的长至多为多少(结果精确到0.01米)?(2)施工完成后,CD与铅垂方向有偏差,现在实测得38.12,18.45,求CD的长(结果精确到0.01米)【答案】(1) 28.28米.(

5、2) 26.93米.【思路点拨】(1)这是一道关于求两点之间的距离问题。题目条件告诉了边AC、CB的长以及以A、C为顶点的两个角,根据正切函数的定义及性质得到一个关于x的不等式,解之得到CD的长度。(2)根据三角形的内角和定理和正弦定理,解得CD的长。【解析】(1)设CD的长为x米,则tan,tan,tantan2,即,解得0,即CD的长至多为28.28米(2)设DBa,DAb,CDm,则ADB180123.43,由正弦定理得,即,答:CD的长为26.93米【总结升华】1. 此题虽为解三角形问题的简单应用,但关键是把未知边所处的三角形找到,在转换过程中应注意排除题目中非数学因素的干扰,将数量关

6、系从题目准确地提炼出来.2. 解三角形的应用题时,通常会遇到两种情况:(1)已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之。(2)已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解。3. 在研究三角形时,灵活根据两个定理可以寻找到多种解决问题的方案,但有些过程较繁复,如何找到最优的方法,最主要的还是分析两个定理的特点,结合题目条件来选择最佳的计算方式。举一反三:【变式1】如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点,从A点测得M点的仰角MAN60,C点的仰角CAB45以及MAC75;从C点测得MCA6

7、0已知山高BC100m,则山高MNm【答案】ABC中,BAC45,ABC90,BC100,AC100AMC中,MAC75,MCA60,AMC45,由正弦定理可得,即 ,解得AM100RtAMN中,MNAMsinMAN100sin60150(m),故答案为:150【变式2】为了开凿隧道,要测量隧道上D、E间的距离,为此在山的一侧选取适当点C,如图,测得CA=400m,CB=600m, ACB=60,又测得A、B两点到隧道口的距离AD=80m,BE=40m(A、D、E、B在一条直线上),计算隧道DE的长.【答案】在ABC中,CA=400m,CB=600m, ACB=60,由余弦定理得 答:隧道长约

8、为409.2m.类型二:测量高度问题例2 某人在塔的正东沿着南偏西的方向前进40米后,望见 塔在东北方向,若沿途测得塔的最大仰角为,求塔高.【解析】由上图所示,过B做于点E,由题意知在E点测得塔的最大仰角,在.由正弦定理,得在中,在中,(米)故所求塔高为米.举一反三:如图,无人机在离地面高200 m的A处,观测到山顶M处的仰角为15、山脚C处的俯角为45,已知MCN=60,则山的高度MN为_m。类型三:方位角问题例3 如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路南侧远处一山顶D在西偏北的方向上,行驶后到达B处,测得此山顶在西偏北的方向上,仰角为,求此山的高度CD.【思路点拨】欲

9、求出CD,只需在BCD中求出BD或BC,而在BCD中先求BC边比较适合;或设CD=x,列方程解答.【解析】方法一:在ABC中, ,,根据正弦定理: = ,有, .方法二:设CD=x,则,根据正弦定理: = ,有,解得,即.举一反三:两灯塔A、B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏西30,灯塔B在观察站C南偏西60,则A、B之间的距离为 ;【答案】;如图,。类型四:航海问题例4如图所示,在海岸A处,发现北偏东45方向,距A为()km的B处有一艘走私船.在A处北偏西75方向,距A为2 km的C处的缉私船奉命以km/h的速度追截走私船.此时走私船正以10km/h的速度从B处向北

10、偏东30方向逃窜,则缉私船沿什么方向能最快追上走私船?并求出所需要的时间.【思路点拨】这里必须弄清楚三个概念:(1)方位角;(2)沿什么方向追,即按什么方位角航行;(3)最快追上,即应理解为按直线航行,且两船所用时间相等,画出示意图,即可求出CD的方位角及由C到D所需航行的时间.【解析】设缉私船追上走私船需,则,.由余弦定理,得 ,由正弦定理,得,而,.,即, 答:缉私船向东偏北方向,只需便能追上走私船.【总结升华】航海问题中关键是方向角的表示,最好要参照方向坐标,准确的画出图形.举一反三:【变式1】如图A,B是海面上位于东西方向相距5(3)海里的两个观测点,现位于A点北偏东45,B点北偏西6

11、0的D点有一艘轮船发出求救信号,位于B点南偏西60且与B点相距20海里的C点的救援船立即前往营救,其航行速度为30海里/小时,求该救援船到达D点需要多长时间?【答案】由题意知AB5(3)海里,DBA906030,DAB904545,ADB180(4530)105,在DAB中,由正弦定理得DB10 (海里)又DBCDBAABC30(9060)60BC20海里在DBC中,由余弦定理得CD2BD2BC22BDBCcosDBC3001 20021020900CD30(海里),则需要的时间t1(小时)答:救援船到达D点需要1小时五、课堂总结:本节课你收获了什么?六、 课堂作业:习题A:1,2,3;卷七、 教学反思:本节课学生预习效果非常好,但节奏有些快,学生可能会吃不消,下节课还要对航海类型应用题进一步研究。

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3