1、函数的最大(小)值与导数(建议用时:40分钟)一、选择题1已知函数f (x),g(x)均为a,b上的可导函数,在a,b上连续且f (x)g(x),则f (x)g(x)的最大值为()Af (a)g(a)Bf (b)g(b)Cf (a)g(b)Df (b)g(a)A令F(x)f (x)g(x),则F(x)f (x)g(x),又f (x)g(x),故F(x)0,F(x)在a,b上单调递减,F(x)maxF(a)f (a)g(a)2函数y的最大值为()Ae1BeCe2DA令y0(x0),解得xe.当xe时,y0;当0xe时,y0.y极大值f (e),在定义域(0,)内只有一个极值,所以ymax.3函数
2、f (x)x2ex1,x2,1的最大值为()A4e1B1Ce2D3e2Cf (x)(x22x)ex1x(x2)ex1,f (x)0得x2或x0.又当x2,1时,ex10,当2x0时,f (x)0;当0x1时f (x)0.f (x)在(2,0)上单调递减,在(0,1)上单调递增又f (2)4e1,f (1)e2,f (x)的最大值为e2.4已知函数f (x)x312x8在区间3,3上的最大值与最小值分别为M,m,则Mm的值为()A16B12C32D6Cf (x)3x2123(x2)(x2),由f (3)17,f (3)1,f (2)24,f (2)8,可知Mm24(8)32.5函数f (x)x3
3、3axa在(0,1)内有最小值,则a的取值范围为()A0a1B0a1C1a1D0aBf (x)3x23a,则f (x)0有解,可得ax2.又x(0,1),0a0时,f (x)2恒成立,则实数a的取值范围是_e,)由f (x)2ln x得f (x),又函数f (x)的定义域为(0,),且a0,令f (x)0,得x(舍去)或x.当0x时,f (x)时,f (x)0.故x是函数f (x)的极小值点,也是最小值点,且f ()ln a1.要使f (x)2恒成立,需ln a12恒成立,则ae.三、解答题9设函数f (x)ln(2x3)x2.(1)讨论f (x)的单调性;(2)求f (x)在区间上的最大值和
4、最小值解易知f (x)的定义域为.(1)f (x)2x.当x0;当1x时,f (x)时,f (x)0,从而f (x)在区间,上单调递增,在区间上单调递减(2)由(1)知f (x)在区间上的最小值为f ln 2.又因为f f lnlnln0,所以f (x)在区间上的最大值为f ln.10已知函数f (x)x33x29xa.(1)求f (x)的单调递减区间;(2)若f (x)2 019对于x2,2恒成立,求a的取值范围解(1)f (x)3x26x9.由f (x)0,得x3,所以函数f (x)的单调递减区间为(,1),(3,)(2)由f (x)0,2x2,得x1.因为f (2)2a,f (2)22a
5、,f (1)5a,故当2x2时,f (x)min5a.要使f (x)2 019对于x2,2恒成立,只需f (x)min5a2 019,解得a2 024.1已知函数f (x)x3ax24在x2处取得极值,若m,n1,1,则f (m)f (n)的最小值是()A13B15C10D15A对函数f (x)求导得f (x)3x22ax,由函数f (x)在x2处取得极值知f (2)0,即342a20,a3.由此可得f (x)x33x24,f (x)3x26x,易知f (x)在1,0)上单调递减,在(0,1上单调递增,当m1,1时,f (m)minf (0)4.又f (x)3x26x的图象开口向下,且对称轴为
6、x1,当n1,1时,f (n)minf (1)9,故f (m)f (n)的最小值为13.2若函数f (x)3xx3在区间(a212,a)上有最小值,则实数a的取值范围是()A(1,)B(1,4)C(1,2D(1,2)C由f (x)33x20,得x1.当x变化时,f (x)及f (x)的变化情况如下表:x(,1)1(1,1)1(1,)f (x)00f (x)22由此得a2121a,解得1a.又当x(1,)时,f (x)单调递减,且当x2时,f (x)2.a2.综上,1a2.3已知a4x34x21对任意x1,1都成立,则实数a的取值范围是_(,1设f (x)4x34x21,则f (x)12x28x
7、4x(3x2),由f (x)0得x或x0.又f (1)1,f ,f (0)1,f (1)9,故f (x)在1,1上的最小值为1.故a1.4已知函数f (x)x3x26xa,若x01,4,使f (x0)2a成立,则实数a的取值范围是_f (x0)2a,即xx6x0a2a,可化为xx6x0a,设g(x)x3x26x,则g(x)3x29x63(x1)(x2)0,得x1或x2.g(1),g(2)2,g(1),g(4)16.由题意,g(x)minag(x)max,a16.5已知函数f (x)(xk)ex.(1)求f (x)的单调区间;(2)求f (x)在区间0,1上的最小值解(1)f (x)(xk1)ex.令f (x)0,得xk1.令x变化时,f (x)与f (x)的变化情况如下表:x(,k1)k1(k1,)f (x)0f (x)ek1所以,f (x)的单调递减区间是(,k1);单调递增区间是(k1,)(2)当k10,即k1时,函数f (x)在0,1上单调递增,所以f (x)在区间0,1上的最小值为f (0)k;当0k11,即1k2时,由(1)知f (x)在0,k1)上单调递减,在(k1,1上单调递增,所以f (x)在区间0,1上的最小值为f (k1)ek1;当k11,即k2时,函数f (x)在0,1上单调递减,所以f (x)在区间0,1上的最小值为f (1)(1k)e.6