ImageVerifierCode 换一换
格式:PPT , 页数:38 ,大小:2.06MB ,
资源ID:967370      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-967370-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2012新高考全案 人教版数学(课件):7-7.ppt)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

2012新高考全案 人教版数学(课件):7-7.ppt

1、(2)直线与平面平行的判定方法:如果平面外的直线a的方向向量为a,平面的法向量为n,则.如果平面外的直线a的方向向量为a,e1、e2是平面的一组基底(不共线的向量),则 a.an0a1e12e2a(3)平面与平面平行的判定方法;,是两个不重合的两个平面,m,n是平面的一组基向量,m,n 如果不重合的平面和平面的法向量分别为n1和n2,则.设两个不重合的平面、,若平面的法向量为n,则.n1n2n 2利用向量的知识判定线面垂直的方法(1)直线与直线垂直的判定方法:如果不重合的直线a和直线b的方向向量分别为a和b,则.(2)直线与平面垂直的判定方法:如果直线a的方向向量为a,平面的法向量为n,则.a

2、b0abana 如果直线a的方向向量为a,e1、e2是平面的一组基底(不共线的向量),则.(3)平面与平面垂直的判定方法:如果不重合的平面和平面的法向量分别为n1和n2,则.设平面的法向量为n,e1、e2是平面的一组基底(不共线的向量),则.ae10且ae20an1n20n1e12e2 1在空间直角坐标系oxyz中,过点E(2,1,2)且与平面xoz平行的直线l交平面yoz于点P,则点P的坐标为()A(0,1,2)B(2,0,2)C(2,1,0)D(4,0,1)解析过点E且平面xoz平行的直线交平面yoz于点P,则P的横坐标为0,纵坐标与竖坐标与E点相同 答案A 解析b8a,ab,故12 答案

3、平等如图所示,在正方体ABCDA1B1C1D1中,M、N分别是C1C、B1C1的中点求证MN平面A1BD.分析(1)可以建立空间直角坐标系,用向量坐标法来解决(2)可以用共线向量或共面向量证明 点评与警示证明线面平行可以用几何法,也可以用向量法用向量法的关键在于构造向量并用共线向量定理或共面向量定理若能建立空间直角坐标系,其证法更为灵活方便(人教A版选修21,P118例4改编)如图1所示,在四棱锥PABCD中,底面ABCD是正方形,侧棱PD底面ABCD,PDDC,E是PC的中点,作EFPB交PB于点F.证明:PA平面EDB.证明方法一:如图2所示,连接AC,AC交BD于O.连接EO.因为底面A

4、BCD是正方形,所以点O是AC的中点 在PAC中,EO是中位线,所以PAEO.而EO平面EDB,且PA平面EDB.所以,PA平面EDB.如图,在四棱锥PABCD中,底面ABCD是正方形,侧棱PD底面ABCD,PDDC,E是PC的中点 证明:PA平面EDB.证明如图所示建立空间直角坐标系,D为坐标原点,设DCa.如图所示,在正方体ABCDA1B1C1D1中,E、F分别是BB1、CD的中点(1)证明ADD1F;(2)求AE与D1F所成的角;(3)证明面AED面A1FD1.(3)由(1)知ADD1F,由(2)知AED1F,又ADAEA,所以D1F面AED.又 因 为 D1F面 A1FD1,所 以 面

5、 AED面A1FD1.点评与警示用空间坐标运算证明“面面垂直”,一般先求出其中一个平面的一个法向量,然后证明它垂直于另一个平面的法向量因为本例有(1)、(2)作铺垫,所以直接利用其结果便可 在正方形ABCDA1B1C1D1中,E、F分别是BB1、CD的中点(1)求证:平面AED平面A1FD1;(2)在AE上求一点M,使得A1M平面ADE.(1)证明建立如图所示的空间直角坐标系Dxyz,不妨设正方体的棱长为2,则 A(2,0,0),E(2,2,1),F(0,1,0),A1(2,0,2),如图所示,已知四棱锥PABCD的底面是直角梯形,ABCBCD90,ABBCPBPC2CD,侧面PBC底面ABC

6、D.证明:(1)PABD;(2)平面PAD平面PAB.分析空间中各元素的位置关系和数量关系的核心是线与线的关系,线与线的关系完全可以用数量关系来表示,从而为向量在立体几何中的应用奠定了坚实的基础考虑到平面PBC平面ABCD及PCPB,故可取BC的中点O为原点,OP为z轴,OB为x轴 证明(1)取BC的中点O,平面PBC平面ABCD,PBC为等边三角形,PO底面ABCD.以BC的中点O为坐标原点,以BC所在直线为x轴,过点O与AB平行的直线为y轴,如图所示,建立空间直角坐标系 点评与警示用向量的方法解决垂直问题即几何问题代数化,这种方法降低了思维的抽象性,使很多思维量较大的证明与计算简单化,突出了向量方法的优点 2运用空间向量的坐标运算解决立体几何问题时,一般步骤为:建立恰当的空间直角坐标系;求出相关点的坐标;写出向量的坐标;向量计算;转化为几何结论

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1