1、教学过程:一、复习准备:1. 提问:我们古代的计算工具?近代计算手段?(算筹与算盘计算器与计算机,见章头图)2. 提问:小学四则运算的规则?(先乘除,后加减) 初中解二元一次方程组的方法?(消元法) 高中二分法求方程近似解的步骤? (给定精度,二分法求方程根近似值步骤如下:A确定区间,验证,给定精度;B. 求区间的中点;C. 计算: 若,则就是函数的零点; 若,则令(此时零点); 若,则令(此时零点);D. 判断是否达到精度;即若,则得到零点零点值a(或b);否则重复步骤24二、讲授新课:1. 教学算法的含义: 出示例:写出解二元一次方程组的具体步骤. 先具体解方程组,学生说解答,教师写解法
2、针对解答过程分析具体步骤,构成其算法 第一步:2,得5y=0 ; 第二步:解得y=0; 第三步:将y=0代入,得x=2. 理解算法: 12世纪时,指用阿拉伯数字进行算术运算的过程. 现代意义上的算法是可以用计算机来解决的某一类问题的程序或步骤,程序和步骤必须是明确和有效的,且能在有限步完成. 广义的算法是指做某一件事的步骤或程序. 算法特点:确定性;有限性;顺序性;正确性;普遍性. 举例生活中的算法:菜谱是做菜肴的算法;洗衣机的使用说明书是操作洗衣机的算法;歌谱是一首歌曲的算法;渡河问题. 练习:写出解方程组的算法.2. 教学几个典型的算法: 出示例1:任意给定一个大于1的整数n,试设计一个程
3、序或步骤对n是否为质数做出判断.提问:什么叫质数?如何判断一个数是否质数? 写出算法. 分析:此算法是用自然语言的形式描述的. 设计算法要求:写出的算法必须能解决一类问题,并且能够重复使用. 要使算法尽量简单、步骤尽量少. 要保证算法正确,且计算机能够执行. 出示例2:用二分法设计一个求方程的近似根的算法. 提问:二分法的思想及步骤?如何求方程近似解 写出算法. 练习:举例更多的算法例子; 对比一般解决问题的过程,讨论算法的主要特征 3. 小结:算法含义与特征;两类算法问题(数值型、非数值型);算法的自然语言表示.三、巩固练习:1. 写出下列算法:解方程x22x30;求1357911的值2. 有蓝和黑两个墨水瓶,但现在却错把蓝墨水装在了黑墨水瓶中,黑墨水错装在了蓝墨水瓶中,要求将其互换,请你设计算法解决这一问题 四、作业: 五、反思: