ImageVerifierCode 换一换
格式:PPT , 页数:59 ,大小:663.50KB ,
资源ID:967010      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-967010-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2012年高考数学二轮复习课件:专题六 第二讲 圆锥曲线.ppt)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

2012年高考数学二轮复习课件:专题六 第二讲 圆锥曲线.ppt

1、 1了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用 2掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质 3了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质 4了解圆锥曲线的简单应用 5理解数形结合的思想 1本部分考查的内容主要是:圆锥曲线的标准方程及几何性质,直线与圆锥曲线的位置关系,圆锥曲线中的定点、定值及最值问题,轨迹方程的探求,参数的范围问题等 2.(文)对圆锥曲线的考查一直是高考的一个热点,文科多考查圆锥曲线的定义、方程和性质高考文科试题对圆锥曲线的考查,在客观题中会以求椭圆离心率、双曲线的渐近线方程和定义的应用为主,主观题多以求圆锥曲线方程、圆

2、锥曲线与平面向量相结合组成综合性大题,考查他们的思维能力,实现试题的区分度(理)理科对本部分的考题类型大部分是二个选择、一个填空、一个解答题客观题的难度为中等,解答题相对较难,且往往为压轴题平面向量的介入,增加了本部分高考命题的广度与深度,成为近几年高考命题的一大靓点,备受命题者的青睐,本专题还经常结合函数、方程、不等式、数列、三角等知识进行综合考查 预计在今年高考中:1圆锥曲线仍是高考的热点之一主要考查两大类问题:一是根据条件,求出表示平面曲线的方程;二是通过方程,研究平面曲线的性质,其热点有:(1)以客观题的形式考查圆锥曲线的基本概念和性质;(2)求平面曲线的方程和轨迹;(3)圆锥曲线的有

3、关元素计算、关系证明或范围确定;(4)涉及与圆锥曲线对称变换、最值或位置关系有关的问题 2从题型上看,以解答题为主,难度较大 椭圆、双曲线、抛物线的定义及几何性质 分析直线l2实质是抛物线的准线,而动点P在抛物线上,故可利用抛物线的定义将P到l2的距离转化为P到焦点的距离再结合图形求解 答案A 评析这类求距离之和的最小值问题,通常的办法是利用圆锥曲线的定义,将其中的一个距离转化(转化为到另一焦点或到准线的距离),然后结合图形进行分析判断,求得最值,这时往往是在三点共线的情况下取得最值 分析圆锥曲线的定义反映了它们的基本特征,理解定义是掌握其性质的基础因此,对于圆锥曲线的定义不仅要熟记,还要深入理解细节部分:比如椭圆的定义中要求|PF1|PF2|F1F2|,双曲线的定义中要求|PF1|PF2|F1F2|.分析(1)将已知点的坐标分别代入椭圆的方程,得a,b.(2)假设满足题意的圆存在,依据直线与圆相切的条件及OAOB的坐标关系,来求假设中的圆的半径R,若求出R,则存在,进而求|AB|的取值范围,否则不存在(2)证明:假设满足题意的圆存在,其方程为x2y2R2,其中0R0且m1时,该方程表示椭圆;当m0直线与圆锥曲线相交;0直线与圆锥曲线相切;0直线与圆锥曲线相离值得注意的是,直线与圆锥曲线相切,它们有一个交点,但直线与圆锥曲线有一个交点并不一定是直线与圆锥曲线相切

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1