1、王 集 中 学 课 堂 教 学 导 学 设 教 学 内 容双曲线及几何性质(1)椭圆共 几 课 时2课 型新授课第 几 课 时1教 学 目 标1了解双曲线的简单几何性质,如范围、对称性、顶点、渐近线和离心率等。2能用双曲线的简单几何性质解决一些简单问题。重 点难 点重点:双曲线的几何性质及初步运用。难点:双曲线的渐近线。学生 活 动 设 计教 师 导 学 设 计教学反思或修改意见 (一)复习提问引入新课1椭圆有哪些几何性质,是如何探讨的?2双曲线的两种标准方程是什么?下面我们类比椭圆的几何性质来研究它的几何性质(二)类比联想得出性质(范围、对称性、顶点)引导学生完成下列关于椭圆与双曲线性质的表
2、格(三)渐近线双曲线的范围在以直线和为边界的平面区域内,那么从x,y的变化趋势看,双曲线与直线具有怎样的关系呢?根据对称性,可以先研究双曲线在第一象限的部分与直线的关系。双曲线在第一象限的部分可写成:当x逐渐增大时,|MN|逐渐减小,x无限增大,|MN|接近于零,|MQ|也接近于零,就是说,双曲线在第一象限的部分从射线ON的下方逐渐接近于射线ON在其他象限内也可以证明类似的情况现在来看看实轴在y轴上的双曲线的渐近线方程是怎样的?由于焦点在y轴上的双曲线方程是由焦点在x轴上的双曲线方程,将x、y字母对调所得到,自然前者渐近线方程也可由后者渐近线方程将x、y字 这样,我们就完满地解决了画双曲线远处
3、趋向问题,从而可比较精再描几个点,就可以随后画出比较精确的双曲线(四)离心率由于正确认识了渐近线的概念,对于离心率的直观意义也就容易掌握了,为此,介绍一下双曲线的离心率以及它对双曲线的形状的影响:变得开阔,从而得出:双曲线的离心率越大,它的开口就越开阔这时,指出:焦点在y轴上的双曲线的几何性质可以类似得出,双曲线的几何性质与坐标系的选择无关,即不随坐标系的改变而改变(五)例题讲解例1求双曲线的实轴长和虚轴长、焦点的坐标、离心率、渐近线方程分析:由双曲线的标准方程,容易求出引导学生用双曲线的实轴长、虚轴长、离心率、焦点和渐近线的定义即可求相关量或式子,但要注意焦点在轴上的渐近线是练习P38 练习
4、1 例2 已知双曲线的中心在原点,焦点在y轴上,焦距为16,离心率为,求双曲线的标准方程。例3求与双曲线共渐近线,且经过点的双曲线的标准方及离心率分析:已知双曲线的渐近线求双曲线的标准方程:方法一按焦点位置分别设方程求解;方法二可直接设所求的双曲线的方程为 求双曲线的实半轴长和虚半轴长、焦点的坐标、离心率、渐近线方程 练习P38 练习2例5 如图,设与定点的距离和它到直线:的距离的比是常数,求点的轨迹方程分析:若设点,则,到直线:的距离,则容易得点的轨迹方程例6 双曲线型冷却塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面如图(1),它的最小半径为,上口半径为,下口半径为,高为试选择适当的坐标
5、系,求出双曲线的方程(各长度量精确到) 学生回顾椭圆的性质与双曲线的性质比较通过数形结合的手段让学生接受合作探究分组练习教师引导学生做然后共同完成带领学生分析由学生完成解题过程多让学生练习提高学生的动手能力多放手让学生自己分析问题分组练习对存在问题及时纠错检测反馈设计课中检测1已知双曲线方程如下,求它们的两个焦点、离心率e和渐近线方程(1)16x29y2=144;(2)16x29y2=1442求双曲线的标准方程:(1)实轴的长是10,虚轴长是8,焦点在x轴上;(2)焦距是10,虚轴长是8,焦点在y轴上;课后巩固曲线的方程点到两准线及右焦点的距离板书设计双曲线的几何性质知识总结 例题 学习目标: 重点: 难点:.精品资料。欢迎使用。高考资源网w。w-w*k&s%5¥u高考资源网w。w-w*k&s%5¥u