ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:2.76MB ,
资源ID:966120      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-966120-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《解析》河北省邢台市第二中学2017-2018学年高一下学期第三次月考数学试题 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《解析》河北省邢台市第二中学2017-2018学年高一下学期第三次月考数学试题 WORD版含解析.doc

1、邢台二中高一下学期第三次月考数学试卷一、单选题(每题5分,共70分)1.1.下列结论中错误的是()A. 若,则B. 若是第二象限角,则为第一象限或第三象限角C. 若角的终边过点(),则D. 若扇形的周长为6,半径为2,则其圆心角的大小为1弧度【答案】C【解析】若 ,则 ,故A正确;若 是第二象限角,即 ,则 为第一象限或第三象限,故B正确;若角的终边过点 则 ,不一定等于,故C不正确;扇形的周长为6,半径为2,则弧长 ,其中心角的大小为弧度,故选C点睛:本题主要考查任意角的三角函数的定义,象限角的判定,属于基础题2.2.已知,则( )A. B. C. D. 【答案】D【解析】,即,则 ,故选D

2、.3.3.已知,则A. B. C. D. 【答案】A【解析】分析:利用辅助角公式(两角差的正弦公式)把已知条件化为,再由诱导公式和同角关系得出结论详解: , 故选A点睛: 利用两角和与差的正弦(余弦公式)可得:,4.4.已知向量=(sin,cos), =(cos,sin),且,若, 0, ,则=( )A. 0 B. C. D. 【答案】B【解析】【分析】由向量,得到,再根据余弦和角公式化简;由、的范围求得的值。【详解】因为所以 ,即 因为, 0, ,即 所以 所以选B【点睛】本题考查了平行向量的坐标表示和余弦和角公式的应用,注意角的取值范围对三角函数值的影响,属于基础题。5.5.若函数的部分图

3、象如图所示,则的单调递减区间是( )A. B. C. D. 【答案】D【解析】分析:该题属于利用题中的条件,确定出函数解析式,之后结合正弦函数的单调减区间,利用整体思维得到所满足的条件,最后求得结果,确定出函数的单调减区间,即正弦型函数的解题思路.详解:根据题中所给的函数图像,可以求得,可以求得,所以,利用最高点可以求得,从而求得,令,解得,所以函数则的单调递减区间是,故选D.点睛:解决该题的关键是利用题中所给的图像中找关键点,最值点的纵坐标求得,利用最高点与平衡位置的横坐标确定出函数的周期,确定出的值,利用最高点的坐标求得的值,最后利用正弦型函数的单调区间的求法求得结果.6.6.已知非零向量

4、,满足,且,则与的夹角为( )A. B. C. D. 【答案】B【解析】【分析】根据向量垂直关系,得到,再由非零向量与的模长关系,化为的表达式,进而求得向量与的夹角。【详解】设与 的夹角为,因为所以 ,即因为,即代入得,向量,为非零向量化简得, 所以夹角所以选B【点睛】本题考查了向量数乘运算和垂直关系,根据模长关系求得夹角,属于基础题。7.7.若,则( )A. B. C. D. 【答案】C【解析】 点睛:本题考查的是三角函数中的求值问题.在三角化简求值类题目中,常常考“给值求值”的问题,遇见这类题目一般的解决方法为配凑角:即将要求的式子通过配凑,把要求的角用已知角表示,得到与已知角的关系,进而

5、利用诱导公式,二倍角公式展开求值即可.8.8.已知的三个顶点及平面内一点,若,则点与的位置关系是()A. 点在边上 B. 点在边上或其延长线上C. 点在外部 D. 点在内部【答案】A【解析】,在的三等分点上,即点与的位置关系是点在边上,故选A.9.9.在中,内角,的对边分别是,若,则( )A. B. C. D. 【答案】A【解析】由正弦定理得故选A.10.10.已知曲线C1:y=cos x,C2:y=sin (2x+),则下面结论正确的是( )A. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B. 把C1上各点的横坐标伸长到原来的2倍,纵坐标

6、不变,再把得到的曲线向左平移个单位长度,得到曲线C2C. 把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D. 把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【答案】D【解析】把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选:D点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记

7、每一个变换总是对字母而言. 函数是奇函数;函数是偶函数;函数是奇函数;函数是偶函数.11.11.设函数f(x)=cos(x+),则下列结论错误的是A. f(x)的一个周期为2 B. y=f(x)的图像关于直线x=对称C. f(x+)的一个零点为x= D. f(x)在(,)单调递减【答案】D【解析】f(x)的最小正周期为2,易知A正确;fcoscos31,为f(x)的最小值,故B正确;f(x)coscos,fcoscos0,故C正确;由于fcoscos1,为f(x)的最小值,故f(x)在上不单调,故D错误故选D.12.12.在中,角的对边分别为,且的面积为,则的周长为( )A. B. C. D.

8、 【答案】D【解析】分析:由题意利用正弦定理边化角求得,然后结合余弦定理和面积公式可得,则的周长为.详解:在中,则,即,由余弦定理可得:,即,又,ABC的周长为.本题选择D选项.点睛:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理应用正、余弦定理时,注意公式变式的应用解决三角形问题时,注意角的限制范围13.13.ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinCcosC)=0,a=2,c= ,则C=()A. B. C. D. 【答案】B【解析】试题分析:根据诱导公式和两角和

9、的正弦公式以及正弦定理计算即可详解:sinB=sin(A+C)=sinAcosC+cosAsinC,sinB+sinA(sinCcosC)=0,sinAcosC+cosAsinC+sinAsinCsinAcosC=0,cosAsinC+sinAsinC=0,sinC0,cosA=sinA,tanA=1,A,A= ,由正弦定理可得,a=2,c=,sinC= ,ac,C=,故选:B点睛:本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来

10、说 ,当条件中同时出现 及 、 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.14.14.设函数 ,若函数恰有三个零点, ,则的值是A. B. C. D. 【答案】B【解析】函数 ,故 根据题意得到 化简得到=.故答案为:B.点睛:函数的零点或方程的根的问题,一般以含参数的三次式、分式、以e为底的指数式或对数式及三角函数式结构的函数零点或方程根的形式出现,一般有下列两种考查形式:(1)确定函数零点、图象交点及方程根的个数问题;(2)应用函数零点、图象交点及方程解的存在情况,求参数的值或取值范围问题研究方程根

11、的情况,可以通过导数研究函数的单调性、最值、函数的变化趋势等,根据题目要求,通过数形结合的思想去分析问题,可以使得问题的求解有一个清晰、直观的整体展现。同时在解题过程中要注意转化与化归、函数与方程、分类讨论思想的应用二、填空题(每题5分,共20分)15.15.已知向量a,b的夹角为60,|a|=2,|b|=1,则| a +2 b |= _ .【答案】【解析】平面向量与的夹角为,.故答案为:.点睛:(1)求向量的夹角主要是应用向量的数量积公式(2) 常用来求向量的模16.16.函数()的最大值是_【答案】1【解析】化简三角函数的解析式,则 ,由可得,当时,函数取得最大值1点睛:本题经三角函数式的

12、化简将三角函数的问题转化为二次函数的问题,二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合、密切联系图象是探求解题思路的有效方法一般从:开口方向;对称轴位置;判别式;端点函数值符号四个方面进行分析17.17.已知变量满足,目标函数的最小值为5,则的值为_【答案】5【解析】如图 为满足条件的可行域,由得,当直线 过点 时有最小值5,此时 ,解得坐标为 ,代入 得 .【点睛】利用线性规划求最值,一般用图解法求解,其步骤是:1.在坐标系中作出可行域;2.根据目标函数的几何意义,将目标函数进行变形;3. 确定最优解:在可行域内平行移动目标函数变形后的直线,

13、从面确定最优解;4.求最值:将最解代入目标函数即可求最大值与最小值.18.18.在中,. 若,且,则的值为_.【答案】【解析】 ,则.【考点】向量的数量积【名师点睛】根据平面向量的基本定理,利用表示平面向量的一组基地可以表示平面内的任一向量,利用向量的定比分点公式表示向量,计算数量积,选取基地很重要,本题的已知模和夹角,选作基地易于计算数量积.三、解答题(每题12分,共60分)19.19.在中,()求;()的面积,求的边的长【答案】();().【解析】试题分析:(1)由得,由,可得 ,化简得,;(2)由和正弦定理得,由得,解,由余弦定理可得结果.试题解析:(1)由得,由得, ,所以, (2)设

14、角、所对边的长分别为、由和正弦定理得,由得解得(负值舍去)由余弦定理得,20.20.已知函数(1)求的周期和及其图象的对称中心;(2)在锐角中,角的对边分别是满足,求函数的取值范围【答案】(1)(2)【解析】试题分析:(1)利用二倍角的正弦公式、二倍角的余弦公式以及两角和的正弦公式可得,由周期公式可得周期,由可得对称中心;(2)由,根据正弦定理及两角和的正弦公式可得从而得,进而得,求得,利用正弦函数的单调性结合图象可得结果.试题解析: 对称中心是 且 而,【方法点睛】本题主要考查正弦定理、两角和的正弦公式正弦函数的性质,属于中档题. 正弦定理是解三角形的有力工具,其常见用法有以下三种:(1)知

15、道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径21.21.在中,内角所对的边分别为,向量,且.(1)求角的大小;(2)若,求的取值范围.【答案】(1);(2).【解析】【分析】(1)根据向量得到,再由正弦定理将边化为角的表达式,结合余弦定理求得角C的值。(2)利用正弦定理求的ABC的外接圆半径,将表示成A与B的三角函数式,利用辅助角公式化为角A的函数表达式;再由角A的取值范围求得的范围。【详解】(1) 又 . .(2), ABC外接圆直径2R=2 的取值范围是 .【点睛】本题

16、考查了向量垂直的坐标表示,正弦定理、余弦定理的综合应用,辅助角公式化简三角函数表达式,知识点多,较为综合,属于中档题。22.22.在中,内角所对的边分别为.已知,.(I)求的值;(II)求的值.【答案】()()【解析】试题分析:利用正弦定理“角转边”得出边的关系,再根据余弦定理求出,进而得到,由转化为,求出,进而求出,从而求出的三角函数值,利用两角差的正弦公式求出结果.试题解析:()解:由,及,得.由,及余弦定理,得.()解:由(),可得,代入,得.由()知,A为钝角,所以.于是,故.考点:正弦定理、余弦定理、解三角形【名师点睛】利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关

17、系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.23.23.已知函数 .(1)求函数在上的值域;(2)若函数在上的值域为 ,求的最小值;(3)在中,求.【答案】(1);(2);(3).【解析】试题分析:(1)运用正弦函数的图象和性质,即可得到所求值域;(2)由题,当时,结合图象分析知:, 即可求得的最小值;(3)由,;可得到 , 又由已知,化简整理得,可得,则可求试题解析:(1),因为,所以,所以,所以,即函数的值域为.(2)因为,所以,当时,结合图象分析知:, 所以,所以的最小值为,(3)由,得,又是的内角,所以, ,化简整理得,则,所以.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3