1、2.1.2椭圆的简单几何性质3【学情分析】:学生已经掌握了椭圆的概念、标准方程的概念,也能够运用标准方程中的a,b,c的关系解决题目,但还不够熟练。另外对于求轨迹方程、解决直线与椭圆关系的题目,还不能很好地分析、解决。【三维目标】:1、知识与技能:进一步强化学生对于椭圆标准方程中a,b,c关系理解,并能运用到解题当中去。强化求轨迹方程的方法、步骤。解决直线与椭圆的题目,强化数形结合的运用。2、过程与方法:通过习题、例题的练讲结合,达到学生熟练解决椭圆有关问题的能力。3、情感态度与价值观:通过一部分有难度的题目,培养学生克服困难的毅力。【教学重点】:知识与技能【教学难点】:知识与技能【课前准备】
2、:学案【教学过程设计】:教学环节教学活动设计意图一、复习、引入1、请讲出椭圆的标准方程?并讲出a,b,c之间的关系?2、怎样来求动点的轨迹方程,具体的步骤有哪些?3、直线与椭圆的关系有哪些种? 突出本节要复习的内容二、例题、练习一、椭圆的标准方程及a,b,c之间的关系1、方程表示焦点在y轴上的椭圆,则k的取值范围是 2、焦点坐标为(0,-4)、(0,4),a=5的椭圆的标准方程为 3、动点M到两个定点A(0,-)、B(0,)的距离的和是,则动点M的轨迹方程是 4、经过点A(-2,0),B(1,)两点的椭圆的标准方程. 二、求动点的轨迹方程。(重视步骤)1、点M(x,y)与定点F(4,0)的距离
3、和它到直线L:的距离的比是常数,求点M的轨迹方程,并说明它是什么曲线?。()2、若P(-3,0)是圆x+y-6x-55=0内一定点,动圆M与已知圆相内切且过P点,求动圆圆心M的轨迹方程。()三、直线与椭圆的关系。(数形结合,关注过程)1、k为何止时,直线和曲线有两个公共点?一个公共点?没有公共点?分析:利用联立方程组,再利用进行判断。*2、已知椭圆,直线L:,椭圆上是否存在一点,它到直线L的距离最小?,最小距离是多少?()利用三组题目,复习相关的三个知识点。第一组:先练后评第二组:先引导分析再做,后评;第三组:与前一节例题呼应,先经过分析,在引导学生写出过程。目的:1、使学生在做题的过程中,复
4、习椭圆的相关知识。2、强化学生对后两大类题型步骤的掌握。三、小结本节课对于前面几节课讲过的知识,进行了一次复习。椭圆是高考中常考的知识点,需要同学们对椭圆相关知识足够的熟悉,过程步骤清楚,做题速度足够的快、准确。四、作业1、若方程表示的曲线是椭圆,则k的取值范围是 2、与椭圆共焦点,且过点(3,-2)的椭圆方程是 3、若C、D是以F1、F2为焦点的椭圆上的两点,CD过点F1,则F2CD的长 20 4、已知(4,2)是直线l被椭圆1所截得的线段的中点,则l的方程是_5、一动圆与圆外切,同时与圆内切,求动圆圆心的轨迹方程,并说明它是什么曲线?()6、直线l过点M(1,1),与椭圆+=1相交于A、B两点,若AB的中点为M,试求直线l的方程. (3x+4y7=0)