1、第八讲 数列综合 高考在考什么【考题回放】1.已知成等比数列,且曲线的顶点是,则等于(B)3 2 1 2.已知等差数列的前项和为,若,则73. 在等比数列中,前项和为,若数列也是等比数列,则等于A B. C. D.【解析】因数列为等比,则,因数列也是等比数列,则即,所以,故选择答案C。4.设集合, 都是的含两个元素的子集,且满足:对任意的,(,),都有(表示两个数中的较小者),则的最大值是(B)A10 B11 C12 D135. 已知正项数列an,其前n项和Sn满足10Sn=an2+5an+6且a1,a3,a15成等比数列,求数列an的通项an .解析:解: 10Sn=an2+5an+6, 1
2、0a1=a12+5a1+6,解之得a1=2或a1=3 又10Sn1=an12+5an1+6(n2), 由得 10an=(an2an12)+6(anan1),即(an+an1)(anan15)=0 an+an10 , anan1=5 (n2) 当a1=3时,a3=13,a15=73 a1, a3,a15不成等比数列a13;当a1=2时,a3=12, a15=72, 有a32=a1a15 , a1=2, an=5n36.已知公比为的无穷等比数列各项的和为9,无穷等比数列各项的和为.(I)求数列的首项和公比;(II)对给定的,设是首项为,公差为的等差数列,求的前10项之和;解: ()依题意可知,()
3、由()知,所以数列的的首项为,公差,即数列的前10项之和为155.高考要考什么本章主要涉及等差(比)数列的定义、通项公式、前n项和及其性质,数列的极限、无穷等比数列的各项和同时加强数学思想方法的应用,是历年的重点内容之一,近几年考查的力度有所增加,体现高考是以能力立意命题的原则高考对本专题考查比较全面、深刻,每年都不遗漏其中小题主要考查间相互关系,呈现“小、巧、活”的特点;大题中往往把等差(比)数列与函数、方程与不等式,解析几何 等知识结合,考查基础知识、思想方法的运用,对思维能力要求较高,注重试题的综合性,注意分类讨论高考中常常把数列、极限与函数、方程、不等式、解析几何等等相关内容综合在一起
4、,再加以导数和向量等新增内容,使数列综合题新意层出不穷常见题型:(1)由递推公式给出数列,与其他知识交汇,考查运用递推公式进行恒等变形、推理与综合能力(2)给出Sn与an的关系,求通项等,考查等价转化的数学思想与解决问题能力(3)以函数、解析几何的知识为载体,或定义新数列,考查在新情境下知识的迁移能力理科生需要注意数学归纳法在数列综合题中的应用,注意不等式型的递推数列 突 破 重 难 点【范例1】已知数列,满足,且()(I)令,求数列的通项公式;(II)求数列的通项公式及前项和公式解:()由题设得,即()易知是首项为,公差为的等差数列,通项公式为(II)解:由题设得,令,则易知是首项为,公比为
5、的等比数列,通项公式为 由解得, 求和得【变式】在等差数列中,前项和满足条件, ()求数列的通项公式;()记,求数列的前项和。解:()设等差数列的公差为,由得:,所以,即,又,所以。()由,得。所以,当时,;当时,即。(理)已知二次函数的图像经过坐标原点,其导函数为,数列的前n项和为,点均在函数的图像上。()、求数列的通项公式;()、设,是数列的前n项和,求使得对所有都成立的最小正整数m;解:()设这二次函数f(x)ax2+bx (a0) ,则 f(x)=2ax+b,由于f(x)=6x2,得a=3 , b=2, 所以 f(x)3x22x.又因为点均在函数的图像上,所以3n22n.当n2时,an
6、SnSn1(3n22n)6n5.当n1时,a1S13122615,所以,an6n5 ()()由()得知,故Tn(1).因此,要使(1)a;(3)记(n=1,2,),求数列bn的前n项和Sn。解析:(1),是方程f(x)=0的两个根,; (2),=,有基本不等式可知(当且仅当时取等号),同,样,(n=1,2,), (3),而,即,同理,又【文】已知函数,、是方程的两个根(),是的导数设,.(1)求、的值;(2)已知对任意的正整数有,记,.求数列的前项和解、(1) 由 得 (2) 又 数列是一个首项为 ,公比为2的等比数列; 【变式】对任意函数f(x),xD,可按图示32构造一个数列发生器,其工作
7、原理如下:输入数据x0D,经数列发生器输出x1f(x0);若x1D,则数列发生器结束工作;若x1D,则将x1反馈回输入端,再输出x2f(x1),并依此规律继续下去现定义f(x)=()若输入x0,则由数列发生器产生数列xn请写出数列xn的所有项;()若要数列发生器产生一个无穷的常数列,试求输入的初始数据x0的值;()(理)若输入x0时,产生的无穷数列xn满足:对任意正整数n,均有xnxn1,求x0的取值范围解:()f(x)的定义域D(1)(1,)数列xn只有三项x1,x2,x31()f(x)x即x23x20,x1或x2即x01或2时,xn1xn,故当x01时,x01;当x02时,xn2(nN)(
8、)解不等式x,得x1或1x2,要使x1x2,则x21或1x12对于函数f(x)。若x11,则x2f(x1)4,x3f(x2)x2当1x12时,x2f(x)x1且1x22依次类推可得数列xn的所有项均满足xn1xn(nN)综上所述,x1(1,2),由x1f(x0),得x0(1,2)【范例3】已知()是曲线上的点,是数列的前项和,且满足,(I)证明:数列()是常数数列;(II)确定的取值集合,使时,数列是单调递增数列;(III)证明:当时,弦()的斜率随单调递增解:(I)当时,由已知得因为,所以 于是 由得 于是 由得, 所以,即数列是常数数列(II)由有,所以由有,所以,而 表明:数列和分别是以
9、,为首项,6为公差的等差数列,所以,数列是单调递增数列且对任意的成立且即所求的取值集合是(III)解法一:弦的斜率为任取,设函数,则记,则,当时,在上为增函数,当时,在上为减函数,所以时,从而,所以在和上都是增函数由(II)知,时,数列单调递增,取,因为,所以取,因为,所以所以,即弦的斜率随单调递增解法二:设函数,同解法一得,在和上都是增函数,所以,故,即弦的斜率随单调递增【文】设是数列()的前项和,且,(I)证明:数列()是常数数列;(II)试找出一个奇数,使以18为首项,7为公比的等比数列()中的所有项都是数列中的项,并指出是数列中的第几项解:(I)当时,由已知得因为,所以 于是 由得:于
10、是由得:即数列()是常数数列(II)由有,所以由有,所以,而表明:数列和分别是以,为首项,6为公差的等差数列所以,由题设知,当为奇数时,为奇数,而为偶数,所以不是数列中的项,只可能是数列中的项若是数列中的第项,由得,取,得,此时,由,得,从而是数列中的第项(注:考生取满足,的任一奇数,说明是数列中的第项即可)【变式】(文)已知a1=2,点(an,an+1)在函数f(x)=x2+2x的图象上,其中=1,2,3,(1) 证明数列lg(1+an)是等比数列;(2) 设Tn=(1+a1) (1+a2) (1+an),求Tn及数列an的通项;(3) 记bn=,求bn数列的前项和Sn,并证明Sn+=1.解
11、:()由已知,两边取对数得,即是公比为2的等比数列.()由()知(*)=由(*)式得() 又 又(理)在数列中,其中()求数列的通项公式;()求数列的前项和;()证明存在,使得对任意均成立()解法一:,由此可猜想出数列的通项公式为以下用数学归纳法证明(1)当时,等式成立(2)假设当时等式成立,即,那么这就是说,当时等式也成立根据(1)和(2)可知,等式对任何都成立解法二:由,可得,所以为等差数列,其公差为1,首项为0,故,所以数列的通项公式为()解:设,当时,式减去式,得,这时数列的前项和当时,这时数列的前项和()证明:通过分析,推测数列的第一项最大,下面证明:由知,要使式成立,只要,因为所以式成立因此,存在,使得对任意均成立 本卷第12页(共12页)