ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:90.50KB ,
资源ID:963135      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-963135-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021-2022学年高中数学人教A版选修2-1教案:2-3-2双曲线的简单几何性质3 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021-2022学年高中数学人教A版选修2-1教案:2-3-2双曲线的简单几何性质3 WORD版含解析.doc

1、2.3.2双曲线的简单几何性质教学目标1.掌握双曲线的准线方程.2.能应用双曲线的几何性质求双曲线方程;3.应用双曲线知识解决生产中的实际问题.教学重点 双曲线的准线与几何性质的应用教学难点双曲线离心率、准线方程与双曲线关系. 教学方法 启发式教具准备 三角板教学过程I.复习回顾:师:上一节,我们利用双曲线的标准方程推导了双曲线的几何性质,下面我们作一简要的回顾(略),这一节我们将继续研究双曲线的几何性质及其应用.II.讲授新课:例2 双曲线型自然通风塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面,它的最小半径为12 m,上口半径为13 m,下口半径为25 m,高55 m.选择适当的坐标系,

2、求出此双曲线的方程(精确到1m).解:如图817,建立直角坐标系xOy,使A圆的直径AA在x轴上,圆心与原点重合.这时上、下口的直径CC、BB平行于x轴,且=132 (m),=252 (m).设双曲线的方程为 (a0,b0)令点C的坐标为(13,y),则点B的坐标为(25,y55).因为点B、C在双曲线上,所以 解方程组由方程(2)得 (负值舍去).代入方程(1)得化简得 19b2+275b18150=0 (3)解方程(3)得 b25 (m).所以所求双曲线方程为:说明:这是一个有实际意义的题目.解这类题目时,首先要解决以下两个问题;(1)选择适当的坐标系;(2)将实际问题中的条件借助坐标系用

3、数学语言表达出来.例3 点M(x,y)与定点F(c,o)的距离和它到定直线l:x=的距离的比是常数求点M的轨迹.解:设d是点M到直线l的距离.根据题意,所求轨迹是集合p=,由此得化简得 (c2a2)x2-a2y2=a2(c2a2).设c2a2=b2,就可化为:这是双曲线的标准方程,所以点M的轨迹是实轴长、虚轴长分别为2a、2b的双曲线.(图818)说明:此例题要求学生进一步熟悉并熟练掌握求解曲线轨迹方程的一般步骤.6.双曲线的准线:由例3可知,当点M到一个定点的距离和它到一条定直线的距离的比是常数e=(e1)时,这个点的轨迹是双曲线.定点是双曲线的焦点,定直线叫双曲线的准线,常数e是双曲线的离心率.准线方程:x=其中x=相应于双曲线的右焦点F(c,0);x=相应于左焦点F(c,0).师:下面我们通过练习来进一步熟悉双曲线几何性质的应用.III.课堂练习:课本P113 2、3、4、5.要求学生注意离心率、准线方程与双曲线的关系的应用.课堂小结师:通过本节学习,要求大家熟练掌握双曲线几何性质的应用,并注意利用离心率、准线方程与双曲线的关系确定双曲线方程的方法,并了解双曲线在实际中的应用问题.课后作业 习题8.4 2,3,4,7板书设计8.4.2例2 例3 6.双曲线的 学生 准线 练习教学后记

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3