1、课题:充要条件 课时:004课型:新授课教学目标知识与技能目标:() 正确理解充要条件的定义,了解充分而不必要条件, 必要而不充分条件, 既不充分也不必要条件的定义() 通过学习,使学生明白对条件的判定应该归结为判断命题的真假,过程与方法目标:在观察和思考中,在解题和证明题中,培养学生思维能力的严密性品质情感、态度与价值观:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神教学重点与难点 重点:1、正确区分充要条件;2、正确运用“条件”的定义解题难点:正确区分充要条件教学过程1.学生思考、分析已知p:整数a是2的倍数;q:整数a是偶数.请判断: p是q的充分条件吗?p
2、是q的必要条件吗?分析:要判断p是否是q的充分条件,就要看p能否推出q,要判断p是否是q的必要条件,就要看q能否推出p易知:pq,故p是q的充分条件;又q p,故p是q的必要条件此时,我们说, p是q的充分必要条件.充要条件一般地,如果既有pq ,又有qp 就记作 p q.此时,我们说,那么p是q的充分必要条件,简称充要条件.显然,如果p是q的充要条件,那么q也是p的充要条件.概括地说,如果p q,那么p 与 q互为充要条件.3.例题解析例1:下列各题中,哪些p是q的充要条件?() p:b0,q:函数f(x)ax2bxc是偶函数;() p:x 0,y 0,q: xy 0;() p: a b ,
3、q: a + c b + c;() p:x 5, ,q: x 10() p: a b ,q: a2 b2分析:要判断p是q的充要条件,就要看p能否推出q,并且看q能否推出p解:命题()和()中,pq ,且qp,即p q,故p 是q的充要条件;命题()中,pq ,但qp,故p 不是q的充要条件;命题()中,pq ,但qp,故p 不是q的充要条件; 命题()中,pq ,且qp,故p 不是q的充要条件;例2:已知:O的半径为r,圆心O到直线l的距离为d求证:dr是直线l与O相切的充要条件分析:设p:dr,q:直线l与O相切要证p是q的充要条件,只需要分别证明充分性(pq)和必要性(qp)即可证明过程
4、略例3、设p是r的充分而不必要条件,q是r的充分条件,r成立,则s成立s是q的充分条件,问(1)s是r的什么条件?(2)p是q的什么条件?4四种条件:一般地,若pq ,但qp,则称p是q的充分但不必要条件;若pq,但qp,则称p是q的必要但不充分条件;若p q,则p 与 q互为充要条件.若pq,且qp,则称p是q的既不充分也不必要条件在讨论p是q的什么条件时,就是指以下四种之一:若pq ,但qp,则p是q的充分但不必要条件;若qp,但pq,则p是q的必要但不充分条件;若pq,且qp,则p是q的充要条件;若pq,且qp,则p是q的既不充分也不必要条件5巩固练习: (1).(15年安徽文科改编)设p:x3,q:-1x3,则p是q成立的 条件【解析】试题分析:,但,是成立的必要不充分条件(2). (15年陕西文科改编)“”是“”的( A )A充分不必要条件 B必要不充分条件 C充分必要条件 D既不充分也不必要(3). 【2015高考天津,理4】设 ,则“ ”是“ ”的( )(A)充分而不必要条件 (B)必要而不充分条件(C)充要条件 (D)既不充分也不必要条件【答案】A【考点定位】不等式解法与充分条件、必要条件.6布置作业:P12:习题1.2A组第1(3)(2),2(3),3题;p13 B组:第2题。教学反思: