ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:100.50KB ,
资源ID:961196      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-961196-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020-2021学年高中数学 第一章 计数原理 5.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2020-2021学年高中数学 第一章 计数原理 5.doc

1、二项式定理A组基础巩固1(12x)5的展开式中,x2的系数等于()A80 B40 C20 D10解析:(12x)5的第r1项为Tr1C(2x)r2rCxr,令r2,得x2的系数为22C40.答案:B2(4x2x)6(xR)展开式中的常数项是()A20 B15 C15 D20解析:设展开式的常数项是第r1项,则Tr1C(4x)6r(2x)r,即Tr1C(1)r22(6r)x2rxC(1)r212x3rx,令12x3rx0,则r4,展开式中的常数项为T5C(1)415.答案:C3对于二项式(x3)n的展开式(nN),四位同学作出了四种判断:存在nN,展开式中有常数项;对任意nN,展开式中没有常数项

2、;对任意nN,展开式中没有x的一次项;存在nN,展开式中有x的一次项上述判断中正确的是()A与 B与C与 D与解析:Tk1C()nkx3kCx4kn,可知当n4,k1时,4kn0,故正确;n3,k1时,4kn1,故正确答案:C412C4C8C16C(2)nC的值为()A1 B1 C(1)n D3n解析:12C4C8C16C(2)nC1(2)n(12)n(1)n.答案:C5已知(1ax)(1x)5的展开式中x2的系数为5,则a()A4 B3 C2 D1解析:展开式中含x2的系数为CaC5,解得a1,故选D.答案:D6(2)6的二项展开式中的常数项为_(用数字作答)解析:(2)6的展开式通项公式是

3、Tr1C(2)6r()rC26r(1)rx3r,由题意知3r0,r3,所以二项展开式中的常数项为T4C23(1)3160.答案:1607若6展开式的常数项为60,则常数a的值为_解析:6展开式的通项为Tr1Cx6r(1)r()rx2rCx63r(1)r()r.令63r0,即得r2.故C()260,解得a4.答案:48若(x)n的展开式中第二项与第四项的系数之比为12,则展开式中第三项的二项式系数为_解析:(x)n的展开式中第二项与第四项分别为T2Cxn1()1nxn1,T4Cxn3()32Cxn3.由题意得,即n23n40,解得n4或n1(舍去)所以第三项的二项式系数为C6.答案:69对于()

4、9的展开式,(1)求展开式中的常数项;(2)求展开式的中间两项解析:Tr1C()9r()rC32r9x9r.(1)当9r0,即r6时展开式是常数项,即常数项为T7C332 268;(2)()9的展开式共10项,它的中间两项分别是第5项、第6项,T5C389x9642x3,T6C3109x9378x.10已知在n的展开式中,第6项为常数项(1)求n;(2)求展开式中所有的有理项解析:(1)二项展开式的通项为C()nrr(3)rCx.第6项为常数项,当r5时,0,解得n10.(2)根据通项公式,由题意,得令k(kZ),则102r3k,即r5k.rZ,k应为偶数,k2,0,2,r2,5,8.第3项、

5、第6项与第9项为有理项,它们分别为405x2,61 236,295 245x2.B组能力提升1在(1x)6(1y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)f(2,1)f(1,2)f(0,3)()A45 B60 C120 D210解析:由题意知f(3,0)CC,f(2,1)CC,f(1,2)CC,f(0,3)CC,因此f(3,0)f(2,1)f(1,2)f(0,3)120,选C.答案:C2(12)3(1)5的展开式中x的系数是()A4 B2 C2 D4解析:(12)3的通项为Tr1C2rx,(1)5的通项为Tk1(1)kCx.要求展开式中x的系数,只需(12)3中的常数项及

6、一次项系数与(1)5中的一次项系数及常数项分别相乘再求和,即1(10)12110122.答案:C3若(2x2)n(nN*)的展开式中含有常数项,则n的最小值为_解析:Tr1C(2x2)nr()rC2nrx2n2r(1)rx(1)r2nrCx2n.令2n0,得6n7r,因而n必须是7的倍数,nmin7.答案:74二项式()n展开式中,前三项系数依次组成等差数列,则展开式中的常数项等于_解析:由题意得1n(n1)2,解方程得:n8,Tr1Cx(8r)(x)rCx()r,令0,得r2,常数项为T3C()27.答案:75(x)100展开式所得关于x的多项式中系数为有理数的共有多少项?解析:Tk1C(x

7、)100k()kC3502x100k,若第k1项的系数为有理数,则50,均为整数,故k为6的倍数时,第k1项的系数为有理数0k100,k60,61,62,616时,项的系数为有理数,故有17项系数为有理数6(1)求(1xx2)8的展开式中x5的系数;(2)求(1x)2(1x)5的展开式中x3的系数解析:(1)(1xx2)81(xx2)8,Tr1C(xx2)r,则x5的系数由(xx2)r来决定Tk1Cxrkx2kCxrk,令rk5,解之得或或含x5的系数为CCCCCC504.(2)解法一(1x)2(1x)5(1x2)2(1x)3(12x2x4)(13x3x2x3),故x3的系数为1(1)(2)(3)5.解法二(1x)2的通项Tr1Cxr,(1x)5的通项Tk1(1)kCxk,(1x)2(1x)5的通项为(1)kCCxkr(其中r0,1,2,k0,1,2,3,4,5),令kr3.则有或或x3的系数为CCCC5.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3