收藏 分享(赏)

2021-2022学年高中数学 模块综合测评(含解析)新人教A版选修2-1.doc

上传人:高**** 文档编号:960993 上传时间:2024-06-02 格式:DOC 页数:10 大小:218KB
下载 相关 举报
2021-2022学年高中数学 模块综合测评(含解析)新人教A版选修2-1.doc_第1页
第1页 / 共10页
2021-2022学年高中数学 模块综合测评(含解析)新人教A版选修2-1.doc_第2页
第2页 / 共10页
2021-2022学年高中数学 模块综合测评(含解析)新人教A版选修2-1.doc_第3页
第3页 / 共10页
2021-2022学年高中数学 模块综合测评(含解析)新人教A版选修2-1.doc_第4页
第4页 / 共10页
2021-2022学年高中数学 模块综合测评(含解析)新人教A版选修2-1.doc_第5页
第5页 / 共10页
2021-2022学年高中数学 模块综合测评(含解析)新人教A版选修2-1.doc_第6页
第6页 / 共10页
2021-2022学年高中数学 模块综合测评(含解析)新人教A版选修2-1.doc_第7页
第7页 / 共10页
2021-2022学年高中数学 模块综合测评(含解析)新人教A版选修2-1.doc_第8页
第8页 / 共10页
2021-2022学年高中数学 模块综合测评(含解析)新人教A版选修2-1.doc_第9页
第9页 / 共10页
2021-2022学年高中数学 模块综合测评(含解析)新人教A版选修2-1.doc_第10页
第10页 / 共10页
亲,该文档总共10页,全部预览完了,如果喜欢就下载吧!
资源描述

1、模块综合测评(满分:150分时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的)1已知aR,则“a2”是“a22a”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件Ba22aa(a2)00a2“a2”是“a22a”的必要不充分条件2已知命题p:x0,总有(x1)ex1,则p为()Ax00,使得(x01)ex01Bx00,使得(x01)ex01Cx0,总有(x1)ex01Dx0,总有(x1)ex01B命题p为全称命题,所以p为x00,使得(x01)ex01故选B3若椭圆1(ab0)的离心率为,则双曲线1的离

2、心率为()A B C DB由题意,1,而双曲线的离心率e211,e4已知空间向量a(t,1,t),b(t2,t,1),则|ab|的最小值为()A B C2 D4C|ab|2,故选C5椭圆1与椭圆1有()A相同短轴 B相同长轴C相同离心率 D以上都不对D对于1,有a29或a2b0)的左顶点A的斜率为k的直线交椭圆C 于另一点B,且点B在x轴上的射影恰好为右焦点F,若椭圆的离心率为,则k的值为()A BC DC由题意知点B的横坐标是c,故点B的坐标为,则斜率k(1e),故选C11若F1,F2为双曲线C:y21的左、右焦点,点P在双曲线C上,F1PF260,则点P到x轴的距离为()A BC DB设|

3、PF1|r1,|PF2|r2,点P到x轴的距离为|yP|,则Sr1r2sin 60r1r2,又4c2rr2r1r2cos 60(r1r2)22r1r2r1r24a2r1r2,得r1r24c24a24b24,所以Sr1r2sin 602c|yP|yP|,得|yP|,故选B12抛物线y22px(p0)的焦点为F,准线为l,A,B是抛物线上的两个动点,且满足AFB设线段AB的中点M在l上的投影为N,则的最大值是()A BC DC如图设|AF|r1,|BF|r2,则|MN|在AFB中,因为|AF|r1,|BF|r2且AFB,所以由余弦定理,得|AB|,所以,当且仅当r1r2时取等号故选C二、填空题(本

4、大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13已知点P是平行四边形ABCD所在平面外的一点,如果(2,1,4),(4,2,0),(1,2,1)对于下列结论:APAB;APAD;是平面ABCD的法向量;其中正确的是_(填序号)2240,即APAB,正确;440,即APAD,正确;由可得是平面ABCD的法向量,正确;由可得,错误14已知双曲线1(a0,b0)的一条渐近线平行于直线l:y2x10,双曲线的一个焦点在直线l上,则双曲线的方程为_1由已知得2,所以b2a在y2x10中令y0得x5,故c5,从而a2b25a2c225,所以a25,b220,所以双曲线的方程为115在平面直

5、角坐标系xOy中,已知椭圆C:1(ab0)的离心率e,且椭圆C上的点到点Q(0,2)的距离的最大值为3,则椭圆C的方程为_y21由e,得c2a2,所以b2a2c2a2,设P(x,y)是椭圆C上任意一点,则1,所以x2a2a23y2|PQ|,当y1时,|PQ|有最大值由3,可得a23,所以b21,故椭圆C的方程为y2116四棱锥PABCD中,PD底面ABCD,底面ABCD是正方形,且PDAB1,G为ABC的重心,则PG与底面ABCD所成的角的正弦值为_如图,分别以DA,DC,DP所在直线为x轴,y轴,z轴建立空间直角坐标系,由已知P(0,0,1),A(1,0,0),B(1,1,0),C(0,1,

6、0),则重心G,因此(0,0,1),所以sin |cos,|三、解答题(本大题共6小题,共70分解答应写出文字说明,证明过程或演算步骤)17(本小题满分10分)设集合Ax|x23x20,Bx|ax1“xB”是“xA”的充分不必要条件,试求满足条件的实数a组成的集合解Ax|x23x201,2,由于“xB”是“xA”的充分不必要条件,BA当B时,得a0;当B时,由题意得B1或B2则当B1时,得a1;当B2时,得a综上所述,实数a组成的集合是18(本小题满分12分)已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点(4,)(1)求双曲线的方程;(2)若点M(3,m)在双曲线上,求证:

7、0解(1)由双曲线的离心率为,可知双曲线为等轴双曲线,设双曲线的方程为x2y2,又双曲线过点(4,),代入解得6,故双曲线的方程为x2y26(2)证明:由双曲线的方程为x2y26,可得ab,c2,所以F1(2,0),F2(2,0)由点M(3,m),得(23,m),(23,m),又点M(3,m)在双曲线上,所以9m26,解得m23,所以m23019(本小题满分12分)如图,在四棱柱ABCDA1B1C1D1中,侧棱AA1底面ABCD,ABDC,AA11,AB3k,AD4k,BC5k,DC6k(k0)(1)求证:CD平面ADD1A1;(2)若直线AA1与平面AB1C所成角的正弦值为,求k的值解 (1

8、)证明:取CD的中点E,连接BE,如图ABDE,ABDE3k,四边形ABED为平行四边形,BEAD且BEAD4k在BCE中,BE4k,CE3k,BC5k,BE2CE2BC2,BEC90,即BECD又BEAD,CDADAA1平面ABCD,CD平面ABCD,AA1CD又AA1ADA,CD平面ADD1A1(2)以D为原点,的方向为x,y,z轴的正方向建立如图所示的空间直角坐标系,则A(4k,0,0),C(0,6k,0),B1(4k,3k,1),A1(4k,0,1),(4k,6k,0),(0,3k,1),(0,0,1)设平面AB1C的法向量n(x,y,z),则由得取y2,得n(3,2,6k)设AA1与

9、平面AB1C所成的角为,则sin |cos,n|,解得k1,故所求k的值为120(本小题满分12分)如图,过抛物线y22px(p0)的焦点F作一条倾斜角为的直线与抛物线相交于A,B两点(1)用p表示|AB|;(2)若3,求这个抛物线的方程解(1)抛物线的焦点为F,过点F且倾斜角为的直线方程为yx设A(x1,y1),B(x2,y2),由得x23px0,x1x23p,x1x2,|AB|x1x2p4p(2)由(1)知,x1x2,x1x23p,y1y2x1x2(x1x2)p2,x1x2y1y2p23,解得p24,p2这个抛物线的方程为y24x21(本小题满分12分)如图所示,四棱锥PABCD的底面是边

10、长为1的正方形,PACD,PA1,PD,E为PD上一点,PE2ED(1)求证:PA平面ABCD;(2)在侧棱PC上是否存在一点F,使得BF平面AEC?若存在,指出F点的位置,并证明;若不存在,说明理由解(1)证明:PAAD1,PD,PA2AD2PD2,即PAAD又PACD,ADCDD,PA平面ABCD(2)以A为原点,AB,AD,AP所在直线分别为x轴,y轴,z轴建立空间直角坐标系则A(0,0,0),B(1,0,0),C(1,1,0),P(0,0,1),E,(1,1,0),设平面AEC的法向量为n(x,y,z),则即令y1,则n(1,1,2)假设侧棱PC上存在一点F,且(01),使得BF平面A

11、EC,则n0又(0,1,0)(,)(,1,),n120,存在点F,使得BF平面AEC,且F为PC的中点22(本小题满分12分)如图,在平面直角坐标系xOy中,F1,F2分别是椭圆1(ab0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C(1)若点C的坐标为,且BF2,求椭圆的方程;(2)若F1CAB,求椭圆离心率e的值解(1)BF2,而BFOB2OFb2c22a2,点C在椭圆上,C,1,b21,椭圆的方程为y21(2)直线BF2的方程为1,与椭圆方程1联立方程组,解得A点坐标为,则C点的坐标为,又F1为(c,0),kF1C,又kAB,由F1CAB,得1,即b43a2c2c4,所以(a2c2)23a2c2c4,化简得e

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3