1、突破1 数列中含绝对值及奇偶项问题1.2024广州市培英中学校考若等差数列an的前n项和为Sn,且满足S4 0430,S4 0440,对任意正整数n,都有anam,则m的值为(C)A.2 020B.2 021C.2 022D.2 023解析依题意知S4 0434043(a1a4043)24 043a2 0220,所以a2 0220,又S4 0444044(a1a4044)20,即a1a4 0440,所以a2 022a2 0230,则a2 0230,且a2 022a2 023,所以等差数列an是递减数列,a1a2a2 021a2 0220a2 023a2 024,所以对任意正整数n,都有anam
2、,则m2 022.故选C.2.2024福建模拟如图,九连环是中国从古至今广为流传的一种益智玩具.在某种玩法中,按一定规则移动圆环,用an表示解下n(n9,nN*)个圆环所需的最少移动次数,数列an满足a11,且an2an1,n为偶数,2an1+1,n为奇数,则解下5个圆环所需的最少移动次数为(C)A.5B.10C.21D.42解析由a11,an2an1,n为偶数,2an1+1,n为奇数,得a52a414a314(2a21)18a2516a1521.3.多选/2024江西抚州模拟已知数列an满足anan12(1)n,nN*,且a51,则下列表述正确的有(BD)A.a15B.数列a2n1是等差数列
3、C.数列an是等差数列D.数列1anan+1的前n项和为n14n49解析由anan12(1)n,得an+1(1)n+1an(1)n2,所以数列an(1)n是公差为2的等差数列,所以an(1)na5(1)5(n5)(2),即an(2n9)(1)n1.对于选项A,a1(219)(1)117,故选项A不正确;对于选项B,因为a2n14n11,a2n1a2n14(n1)11(4n11)4,故a2n1是公差为4的等差数列,故选项B正确;对于选项C,an2n9,则a33,a4a51,所以an不是等差数列,故选项C不正确;对于选项D,1anan+11(2n9)(1)n+1(2n7)(1)n+212(12n9
4、12n7),所以1anan+1的前n项和Sn12(1715151312n912n7)n14n49,故选项D正确.故选BD.4.多选/2024浙江模拟已知数列an满足a11,a22,a33,且对任意的正整数m,n,都有a2ma2n2amnmn,则下列说法正确的有(ABD)A.a45B.数列a2n2a2n是等差数列C.a2n3n1D.当n为奇数时,ann2+34解析由题意知a11,a22,a33,令m1,n2,得a2a42a31,解得a45,故A正确.此时a4a23,令mn2,得a2n4a2n2a2n22,从而(a2n4a2n2)(a2n2a2n)2,所以数列a2n2a2n是以3为首项,2为公差的
5、等差数列,故B正确.所以a2n2a2n32(n1)2n1,所以a2na2(a2na2n2)(a2n2a2n4)(a4a2)(2n1)(2n3)3(n1)(2n+2)2n21,所以a2nn21,故C错误.令mn1,得a2n2a2n2a2n11,所以a2n1a2n+2a2n12n2n1,令k2n1,则k为奇数,则ak(k12)2k121k2+34,又a11适合上式,所以当n为奇数时,ann2+34,故D正确.故选ABD.5.2024南京市学情调研记Sn为数列an的前n项和,已知an2n(n+2),n为奇数,an1,n为偶数,则S8169.解析当n为奇数时,an2n(n+2)1n1n+2,当n为偶数
6、时,anan1,S82(a1a3a5a7)2(113131515171719)2(119)169.6.2024重庆八中校考在数列an中,a18,a42,且满足an22an1an0(nN*).(1)求数列an的通项公式;(2)设Tna1a2an,求T15的值.解析(1)an22an1an0,an2an1an1an,数列an是等差数列.设an的公差为d,a18,a42,da4a1412,ana1(n1)d102n,nN*.(2)设数列an的前n项和为Sn,则由(1)可得,Sn8nn(n1)2(2)9nn2,nN*.由(1)知an102n,令an0,得n5,当n5时,an0,则T15a1a2a15a
7、1a2a5(a6a7a15)S5(S15S5)2S5S152(9525)(915152)130.7.2023广州市二检设Sn是数列an的前n项和,已知a30,an1(1)nSn2n.(1)求a1,a2;(2)令bnan12an,求b2b4b6b2n.解析(1)由an1(1)nSn2n,得a2S12,a3S24,即a2a12,a3a1a24.又a30,所以a11,a23.(2)当n2k(kN*)时,a2k1S2k22k,当n2k1(kN*)时,a2kS2k122k1,得a2k1a2kS2kS2k122k22k1,得a2k12a2k322k1.因为bnan12an,所以b2b4b6b2n(a32a2)(a52a4)(a72a6)(a2n12a2n)32323325322n132(14n)1422n12.
Copyright@ 2020-2024 m.ketangku.com网站版权所有