ImageVerifierCode 换一换
格式:DOCX , 页数:29 ,大小:2.55MB ,
资源ID:959334      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-959334-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(基础强化北师大版八年级数学上册第一章勾股定理定向练习试题(含详细解析).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

基础强化北师大版八年级数学上册第一章勾股定理定向练习试题(含详细解析).docx

1、北师大版八年级数学上册第一章勾股定理定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,将直角三角形纸片沿AD折叠,使点B落在AC延长线上的点E处若AC3,BC=4,则图中阴影部分的面积是()A

2、BCD2、如图,以RtABC的两直角边为边向外作正方形,其面积分别为S1,S2,若S18cm2,S217cm2,则斜边AB的长是()A3cmB6cmC4cmD5cm3、小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1 m,当它把绳子的下端拉开4 m后,发现下端刚好接触地面,则旗杆的高为()A7 mB7.5 mC8 mD9 m4、如图,把长方形纸条ABCD沿EF,GH同时折叠,B,C两点恰好落在AD边的P点处,若FPH90,PF8,PH6,则长方形ABCD的边BC的长为( ) A20B22C24D305、有一个边长为1的正方形,以它的一条边为斜边,向外作一个直角三角形,再分别以直角三角形

3、的两条直角边为边,向外各作一个正方形,称为第一次“生长”(如图1);再分别以这两个正方形的边为斜边,向外各自作一个直角三角形,然后分别以这两个直角三角形的直角边为边,向外各作一个正方形,称为第二次“生长”(如图2)如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2021次后形成的图形中所有的正方形的面积和是()A1B2020C2021D20226、如图,在ABC中,BAC=90,BC=5,以AB,AC为边作正方形,这两个正方形的面积和为()A5B9C16D257、如图,在矩形ABCD中,AB4,BC6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内的点F处,连接CF,则C

4、F的长为()ABCD8、如图,正方形的边长为10,连接,则线段的长为()ABCD9、如图,三角形纸片ABC,AB=AC,BAC=90,点E为AB中点,沿过点E的直线折叠,使点B与点A重合,折痕现交于点F,已知EF=,则BC的长是()AB3C3D310、如图,在由边长为1的7个正六边形组成的网格中,点A,B在格点上若再选择一个格点C,使ABC是直角三角形,且每个直角三角形边长均大于1,则符合条件的格点C的个数是()A2B4C5D6第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在长方形ABCD中,AB8,AD10,点E为BC上一点,将ABE沿AE折叠,点B恰好落在线

5、段DE上的点F处,则BE的长为_2、有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,这根芦苇的长度为_尺3、已知一直角三角形的两条直角边分别为6cm、8cm,则此直角三角形斜边上的高为_4、如图1,邻边长为2和6的矩形分割成,四块后,拼接成如图2不重叠、无缝隙的正方形,则图2中的值为_,图1中的长为_5、如图,在中,分别以,边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当,时,阴影部分的面积为_三、解答题(5小题,每小题10分,共计50分)1、如图,中,是边上一点,且,若求的长2、如

6、图,已知半径为5的M经过x轴上一点C,与y轴交于A、B两点,连接AM、AC,AC平分OAM,AOCO6(1)判断M与x轴的位置关系,并说明理由;(2)求AB的长;(3)连接BM并延长交圆M于点D,连接CD,求直线CD的解析式3、已知:如图,四边形ABCD,A90,AD12,AB16,CD15,BC25(1)求BD的长;(2)求四边形ABCD的面积4、如图,在ABC中,C=90,M是BC的中点,MDAB于D,求证:.5、勾股定理被誉为“几何明珠”,在数学的发展历程中占有举足轻重的地位它是初中数学中的重要知识点之一,也是初中学生以后解决数学问题和实际问题中常常运用到的重要知识,因此学好勾股定理非常

7、重要学习数学“不仅要知其然,更要知其所以然”,所以,我们要学会勾股定理的各种证明方法请你利用如图图形证明勾股定理:已知:如图,四边形ABCD中,BDCD,AEBD于点E,且ABEBCD求证:AB2BE2+AE2-参考答案-一、单选题1、B【解析】【分析】由勾股定理求出AB,设CD=x,则BD=4-x,根据求出x得到CD的长,利用面积求出答案【详解】解:ACB=90,由折叠得AE=AB=5,DE=BD,设CD=x,则BD=4-x,在DCE中,DCE=90,CE=AE-AC=5-3=2,解得x=1.5,CD=1.5,图中阴影部分的面积是,故选:B【考点】此题考查了折叠的性质,勾股定理,熟记勾股定理

8、的计算公式是解题的关键2、D【解析】【分析】根据正方形的面积可以得到BC28,AC217,然后根据勾股定理即可得到AB2,从而可以求得AB的值【详解】解:S18cm2,S217cm2,BC28,AC217,ACB90,AB2BC2AC2,即AB281725,AB5cm,故选:D【考点】本题考查正方形的面积、勾股定理,解答本题的关键是明确正方形的面积是边长的平方3、B【解析】【分析】根据题意,画出图形,设旗杆AB=x米,则AC=(x+1)米,在RtABC中,根据勾股定理的方程(x+1)2=x2+42,解方程求得x的值即可.【详解】如图所示:设旗杆AB=x米,则AC=(x+1)米,在RtABC中,

9、AC2=AB2+BC2,即(x+1)2=x2+42,解得:x=7.5故选B【考点】本题考查了勾股定理的应用,解决本题的基本思路是是画出示意图,利用勾股定理列方程求解4、C【解析】【详解】由折叠得: 在Rt 中,FPH90,PF8,PH6,则 故BC=BF+FH+HC=6+8+10=24.故选C.5、D【解析】【分析】根据题意可得每“生长”一次,面积和增加1,据此即可求得“生长”了2021次后形成的图形中所有的正方形的面积和【详解】解:如图,由题意得:SA=1,由勾股定理得:SBSC=1,则 “生长”了1次后形成的图形中所有的正方形的面积和为2,同理可得:“生长”了2次后形成的图形中所有的正方形

10、面积和为3,“生长”了3次后形成的图形中所有正方形的面积和为4,“生长”了2021次后形成的图形中所有的正方形的面积和是2022,故选:D【考点】本题考查了勾股数规律问题,找到规律是解题的关键6、D【解析】【分析】设,根据勾股定理可得,即可求解【详解】解:设,根据勾股定理可得,即两个正方形的面积和为25故选:D【考点】本题考查了勾股定理,掌握勾股定理是解题的关键7、C【解析】【分析】连接BF,(见详解图),由翻折变换可知,BFAE,BE=EF,由点E是BC的中点,可知BE=3,根据勾股定理即可求得AE;根据三角形的面积公式可求得BH,进而可得到BF的长度;结合题意可知FE=BE=EC,进而可得

11、BFC=90,至此,在RtBFC中,利用勾股定理求出CF的长度即可【详解】如图,连接BFAEF是由ABE沿AE折叠得到的,BFAE,BE=EFBC=6,点E为BC的中点,BE=EC=EF=3根据勾股定理有AE=AB+BE代入数据求得AE=5根据三角形的面积公式得BH=即可得BF= 由FE=BE=EC,可得BFC=90再由勾股定理有BC-BF=CF代入数据求得CF= 故答案为:【考点】此题考查矩形的性质和折叠问题,解题关键在于利用好折叠的性质,对应点的连线被折痕垂直平分8、B【解析】【分析】延长DH交AG于点E,利用SSS证出AGBCHD,然后利用ASA证出ADEDCH,根据全等三角形的性质求出

12、EG、HE和HEG,最后利用勾股定理即可求出HG【详解】解:延长DH交AG于点E四边形ABCD为正方形AD=DC=BA=10,ADC=BAD=90在AGB和CHD中AGBCHDBAG=DCHBAGDAE=90DCHDAE=90CH2DH2=8262=100= DC2CHD为直角三角形,CHD=90DCHCDH=90DAE=CDH,CDHADE=90ADE=DCH在ADE和DCH中ADEDCHAE=DH=6,DE=CH=8,AED=DHC=90EG=AGAE=2,HE= DEDH=2,GEH=180AED=90在RtGEH中,GH=故选B【考点】此题考查是正方形的性质、全等三角形的判定及性质和勾

13、股定理,掌握正方形的性质、全等三角形的判定及性质和利用勾股定理解直角三角形是解决此题的关键9、B【解析】【分析】折叠的性质主要有:1.重叠部分全等;2.折痕是对称轴,对称点的连线被对称轴垂直平分. 由折叠的性质可知,所以可求出AFB=90,再直角三角形的性质可知,所以,的长可求,再利用勾股定理即可求出BC的长【详解】解: ABAC,,故选B.【考点】本题考查了折叠的性质、等腰直角三角形的判断和性质以及勾股定理的运用,求出AFB=90是解题的关键10、D【解析】【分析】分三种情况讨论,当A=90,或B=90,或C=90时,分别画出符合条件的图形,即可解答【详解】解:分三种情况讨论,当A=90,或

14、B=90,或C=90如图 符合条件的格点C的个数是6个故选:D【考点】本题考查正多边形和圆的性质、直角三角形的判定与性质、直径所对的圆周角是90等知识,是基础考点,掌握相关知识是解题关键二、填空题1、【解析】【分析】设,则,由折叠的性质可知,在中利用勾股定理表示出,在中,利用勾股定理列方程求解【详解】解:设,则,由折叠的性质可知,在中,在中,即,解得的长为【考点】本题考查了勾股定理的应用,折叠的性质,熟练掌握勾股定理是解题的关键2、13【解析】【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答【详解】解:设水深为尺,则芦苇长为尺,根据勾股定理得:,解得:,芦苇的长度(尺,答:芦苇长1

15、3尺故答案为:13【考点】本题考查正确运用勾股定理善于观察题目的信息是解题以及学好数学的关键3、4.8cm.【解析】【分析】根据勾股定理可求出斜边然后由于同一三角形面积一定,可列方程直接解答【详解】直角三角形的两条直角边分别为6cm,8cm,斜边为 =10(cm),设斜边上的高为h,则直角三角形的面积为68=10h,解得:h=4.8cm,这个直角三角形斜边上的高为4.8cm.故答案为4.8cm.【考点】此题考查勾股定理,解题关键在于列出方程.4、 【解析】【分析】由等积法解得正方形的边长,再利用勾股定理解得图的直角边FH的长,在图2中,利用正弦的定义解得,接着利用勾股定理解得,据此解得的值,最

16、后利用解答即可【详解】解:矩形的面积为:26=12正方形的边长如图1,如图2,设或(舍去)故答案为:,【考点】本题考查正方形与矩形、图形的拼接,涉及勾股定理、正弦、余弦等知识,是重要考点,掌握相关知识是解题关键5、24【解析】【分析】根据勾股定理得到AC2=AB2-BC2,先求解AC,再根据阴影部分的面积等于直角三角形的面积加上以AC,BC为直径的半圆面积,再减去以AB为直径的半圆面积即可【详解】解:由勾股定理得,AC2=AB2-BC2=64, 则阴影部分的面积 , 故答案为24【考点】本题考查的是勾股定理、半圆面积计算,掌握勾股定理和半圆面积公式是解题的关键三、解答题1、AC2=CE2+AE

17、2=102+24AC=26,265=5.2(s)答:它至少需要5.2s才能赶回巢中【考点】本题考查了勾股定理的应用关键是构造直角三角形,同时注意:时间=路程速度22【解析】【分析】过点作于点,则,结合可得出,进而可得出,在中,利用勾股定理可求出的长,即,结合可求出的长【详解】解:过点作于点,如图所示,在中,即,又,【考点】本题考查了勾股定理、等腰三角形的性质以及三角形内角和定理,在中,利用勾股定理求出的长是解题的关键2、 (1)M与x轴相切,理由见解析(2)6(3)【解析】【分析】(1)连接CM,证CMx即可得出结论;(2)过点M作MNAB于N,证四边形OCMN是矩形,得MN=OC,ON=OM

18、=5,设AN=x,则OA=5-x,MN=OC=6-(5-x)=1+x,利用勾股定理求出x值,即可求得AN值,再由垂径定理得AB=2AN即可求解;(3)连接BC,CM,过点D作DPCM于P,得直角三角形BCD,由(2)知:AB=6,OA=2,OC=4,所以OB=8,C(4,0),在RtBOC中,BOC=90,由勾股定理,求得BC=,在RtBCD中,BCD=90,由勾股定理,即可求得CD,在RtCPD和在RtMPD中,由勾股定理,求得CP=2,PD=4,从而得出点D坐标,然后用待定系数法求出直线CD解析式即可(1)解:M与x轴相切,理由如下:连接CM,如图,MC=MA,MCA=MAC,AC平分OA

19、M,MAC=OAC,MCA=OAC,OAC+ACO=90,MCO=MCA+ACO=OAC+ACO=90,MC是M的半径,点C在x轴上,M与x轴相切;(2)解:如图,过点M作MNAB于N,由(1)知,MCO=90,MNAB于N,MNO=90,AB=2AN,CON=90,CMN=90,四边形OCMN是矩形,MN=OC,ON=CM=5,OA+OC=6,设AN=x,OA=5-x,MN=OC=6-(5-x)=1+x,在RtMNA中,MNA=90,由勾股定理,得x2+(1+x)2=52,解得:x1=3,x2=-4(不符合题意,舍去),AN=3,AB=2AN=6;(3)解:如图,连接BC,CM,过点D作DP

20、CM于P,由(2)知:AB=6,OA=2,OC=4,OB=8,C(4,0)在RtBOC中,BOC=90,由勾股定理,得BC=,BD是M的直径,BCD=90,BD=10,在RtBCD中,BCD=90,由勾股定理,得CD=,即CD2=20,在RtCPD中,由勾股定理,得PD2=CD2-CP2=20-CP2,在RtMPD中,由勾股定理,得PD2=MD2-MP2=MD2-(MC-CP)2=52-(5-CP)2=10CP-CP2,20-CP2=10CP-CP2,CP=2,PD2=20-CP2=20-4=16,PD=4,即D点横坐标为OC+PD=4+4=8,D(8,-2),设直线CD解析式为y=kx+b,

21、把C(4,0),D(8,-2)代入,得,解得:,直线CD的解析式为:【考点】本题考查直线与圆相切的判定,勾股定理,圆周角定理的推论,垂径定理,待定系数法求一次函数解析式,熟练掌握直线与圆相切的判定、待定系数法求一次函数解析式的方法是解题的关键3、(1)BD20;(2)S四边形ABCD246【解析】【分析】(1)由A90,AD12,AB16,利用勾股定理:BD2AD2+AB2,从而可得答案;(2)利用勾股定理的逆定理证明:CDB90,再由四边形的面积等于两个直角三角形的面积之和可得答案【详解】解:(1)A90,AD12,AB16,BD2AD2+AB2,BD2122+162,BD20;(2)BD2

22、+CD2202+152625,CB2252625,BD2+CD2CB2,CDB90,S四边形ABCDSRtABD+SRtCBD, 246【考点】本题考查的是勾股定理与勾股定理的逆定理的应用,掌握以上知识是解题的关键4、见解析【解析】【分析】连接AM得到三个直角三角形,运用勾股定理分别表示出AD、AM、BM进行代换就可以最后得到所要证明的结果【详解】证明:连接MA,MDAB,AD2=AM2-MD2,BM2=BD2+MD2,C=90,AM2=AC2+CM2M为BC中点,BM=MCAD2=AC2+BD2【考点】本题考查了勾股定理,三次运用勾股定理进行代换计算即可求出结果,另外准确作出辅助线也是正确解出的重要因素5、证明见解析【解析】【分析】连接AC,根据四边形ABCD面积的两种不同表示形式,结合全等三角形的性质即可求解【详解】解:连接AC,ABEBCD,AB=BC,AE=BD,BE=CD,BAE=CBD,ABE+BAE=90,ABE+CBE=90,ABC=90,S四边形ABCD=,又S四边形ABCD=,AB2=AE2+BDBE-BEDE,AB2=AE2+(BD-DE)BE,即AB2=BE2+AE2【考点】本题考查了勾股定理的证明,解题时,利用了全等三角形的对应边相等,对应角相等的性质

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1