1、七年级数学上册第三章整式及其加减难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、式子,0,a,中,下列结论正确的是()A有4个单项式,2个多项式B有3个单项式,3个多项式C有5个整式D以上答案均不
2、对2、下列说法错误的是()A单项式h的系数是1B多项式a-2.5的次数是1Cm+2和3都是整式D是六次单项式3、化简的结果是()ABCD4、若与的和是单项式,则=()AB0C3D65、一个两位数,个位数字是十位数字的2倍,十位数字为x,那么这个两位数为()ABCD6、若多项式的值为2,则多项式的值是()A11B13C-7D-57、若,则的值为()ABCD8、下列各式中,与为同类项的是()ABCD9、下列说法正确的是()A的系数是3B的次数是3C的各项分别为2a,b,1D多项式是二次三项式10、下列各正方形中的四个数之间都有相同的规律,根据此规律,x的值为()A135B153C170D189第卷
3、(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、有一个正六面体骰子,放在桌面上,将骰子沿如图所示的方式滚动,每滚动90算一次,则滚动第2021次后,骰子朝下一面的点数是_2、如图,用大小相同的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形,按这样的方法拼成的第个正方形比第n个正方形多_个小正方形3、如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第20个图需要黑色棋子的个数为_4、如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个
4、这样的图形(图1)拼出来的图形的总长度是_(结果用含、代数式表示).5、如果代数式的值为,那么代数式的值为_三、解答题(5小题,每小题10分,共计50分)1、已知多项式,若的结果中不含有项以及项,求的值2、已知:,求的值3、下列代数式中哪些是单项式?哪些是多项式?分别填入所属的圈中指出其中各单项式的系数;多项式中哪个次数最高?次数是多少?4、观察下列单项式:-x,3x2,-5x3,7x4,-37x19,39x20,写出第n个单项式,为了解这个问题,现提供下面的解题思路:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么?
5、(4)请你根据猜想,写出第2018个,第2019个单项式.5、先化简,再求值,其中x,y1-参考答案-一、单选题1、A【解析】【分析】数与字母的乘积形式是单项式,单独一个数或一个字母是单项式,几个单项式的和是多项式【详解】解:是两个单项式的和,是多项式;是单项式;是3个单项式的和,是多项式:0,a是单项式;是单项式;不是整式,综上所述,单项式共有4个,多项式共有2个,整式共有6个,故选:A【考点】本题考查多项式、单项式的定义,是基础考点,掌握相关知识是解题关键2、D【解析】【分析】如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项【详解】A、B、C说
6、法均是正确的,D中是四次单项式【考点】本题考察单项式知识的相关应用3、B【解析】【分析】根据去括号法则,先去小括号,再去中括号,然后去大括号,即可求解【详解】解:故选:B【考点】本题主要考查了去括号,熟练掌握去括号法则:括号前面是“+”号,去掉括号和括号前面的“+”号,括号里的各项都不改变符号;括号前面是“-”号,去掉括号和括号前面的“-”号,括号里的各项都改变符号是解题的关键4、C【解析】【分析】要使与的和是单项式,则与为同类项;根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a、b的方程组;结合上述提示,解出a、b的值便不难计算出a+b的值【详解】解
7、:根据题意可得:,解得:,所以,故选:【考点】本题考查了同类项的定义,掌握同类项的定义是解题的关键5、B【解析】【分析】首先利用个位数字是十位数字的2倍,且十位数字为x可将个位数表示出来,再结合“该数=10十位数字个位数字”即可求解【详解】解:根据“个位数字是十位数字的2倍,且十位数字为x” ,则个位数字是2x,这个两位数为,故选:B【考点】本题考查根据题意列代数式,得到题目中的数量关系是解本题的关键6、D【解析】【分析】将多项式变形为,再将整体代入即可得解;【详解】解: ,=,故选择:D【考点】本题主要考查代数式的求值,利用整体代入思想求解是解题的关键7、C【解析】【分析】分别计算:,化简后
8、可得答案.【详解】解:,故不符合题意;,故不符合题意;,故符合题意;,故不符合题意;故选:【考点】本题考查的是整式的加减运算,掌握合并同类项的法则与去括号的法则是解题的关键.8、A【解析】【分析】含有相同字母,并且相同字母的指数相同的单项式为同类项,据此分析即可【详解】与是同类项的特点为含有字母,且对应的指数为2,的指数为1,只有A选项符合;故选A【考点】本题考查了同类项的概念,掌握同类项的概念是解题的关键9、A【解析】【分析】根据单项式的次数、系数以及多项式的系数、次数的定义解决此题【详解】解:A根据单项式的系数为数字因数,那么3ab2的系数为3,故A符合题意B根据单项式的次数为所有字母的指
9、数的和,那么4a3b的次数为4,故B不符合题意C根据多项式的定义,2a+b1的各项分别为2a、b、1,故C不符合题意Dx21包括x2、1这两项,次数分别为2、0,那么x21为二次两项式,故D不符合题意故选:A【考点】本题主要考查单项式的系数,次数的定义以及多项式的项、项数以及次数的定义,熟练掌握单项式的系数,次数的定义以及多项式的项、项数以及次数的定义是解决本题的关键10、C【解析】【分析】由观察发现每个正方形内有:可求解,从而得到,再利用之间的关系求解即可【详解】解:由观察分析:每个正方形内有: 由观察发现: 又每个正方形内有: 故选C【考点】本题考查的是数字类的规律题,掌握由观察,发现,总
10、结,再利用规律是解题的关键二、填空题1、2【解析】【分析】观察图形知道第一次点数五和点二数相对,第二次点数四和点数三相对,第三次点数二和点数五相对,第四次点数三和点数四相对,第五次点数五和点二数相对,且四次一循环,从而确定答案【详解】观察图形知道:第一次点数五和点二数相对,第二次点数四和点数三相对,第三次点数二和点数五相对,第四次点数三和点数四相对,第五次点数五和点二数相对,且四次一循环,20214=5051,滚动第2021次后与第一次相同,朝下的数字是5的对面2,故答案为:2【考点】本题考查了正方体相对两个面上的文字及图形类的变化规律问题,解题的关键是发现规律2、2n+3【解析】【分析】首先
11、根据图形中小正方形的个数规律得出变化规律,进而得出答案【详解】解:第一个图形有22=4个正方形组成,第二个图形有32=9个正方形组成,第三个图形有42=16个正方形组成,第n个图形有(n+1)2个正方形组成,第n+1个图形有(n+2)2个正方形组成(n+2)2-(n+1)2=2n+3故答案为:2n+3【考点】此题主要考查了图形的变化类,根据图形得出小正方形的变化规律是解题关键3、440【解析】【分析】先观察图形得出前四个图中黑色棋子的个数,再归纳类推出一般规律,由此即可得【详解】观察图形可知,黑色棋子的个数变化有以下两条规律:(1)正多边形的各顶点均需要1个黑色棋子(2)从第1个图开始,每个图
12、的边上黑色棋子的个数变化依次是即第1个图需要黑色棋子的个数为第2个图需要黑色棋子的个数为第3个图需要黑色棋子的个数为第4个图需要黑色棋子的个数为归纳类推得:第n个图需要黑色棋子的个数为,其中n为正整数则第20个图需要黑色棋子的个数为故答案为:440【考点】本题考查了整式的图形规律探索题,依据图形,正确归纳类推出一般规律是解题关键4、a+8b【解析】【分析】观察可知两个拼接时,总长度为2a-(a-b),三个拼接时,总长度为3a-2(a-b),由此可得用9个拼接时的总长度为9a-8(a-b),由此即可得.【详解】观察图形可知两个拼接时,总长度为2a-(a-b),三个拼接时,总长度为3a-2(a-b
13、),四个拼接时,总长度为4a-3(a-b),所以9个拼接时,总长度为9a-8(a-b)=a+8b,故答案为a+8b.【考点】本题考查了规律题图形的变化类,通过推导得出总长度与个数间的规律是解题的关键.5、【解析】【分析】原式去括号合并整理后,将a+8b的值代入计算即可求值【详解】原式=3a-6b-5a-10b=-2a-16b=-2(a+8b),当a+8b=-5时,原式=10故答案为10【考点】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键三、解答题1、-5【解析】【分析】先合并同类项,再根据的结果中不含有项以及项求出m、n的值即可【详解】,=,结果中不含有项以及项,解得,把代入
14、,【考点】本题考查了整式的加减,当一个多项式中不含有哪一项时,应让那一项的系数为0整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点2、;【解析】【分析】先根据绝对值和平方的非负性求出x,y,再根据整式的混和运算法则化成最简,然后代入数值计算即可【详解】解:,解得:,原式当,时,原式【考点】本题主要考查了整式的化简求值,根据非负性求出x,y的值是解题的关键3、单项式:;多项式:;单项式的系数分别为:;多项式的次数最高,4次【解析】【分析】根据单项式定义,多项式的定义,单项式系数,单项式的次数等进行解答即可【详解】解:单项式:;多项式:;单项式的系数是:;单项式的系数是:;单项式的
15、系数是:;多项式的次数最高,4次【考点】本题考查了多项式、单项式有关内容,熟知相关概念是解本题的关键4、(1)见解析(2)见解析(3)(1)n(2n1)xn(4)第2018个单项式是4035x2018,第2019个单项式是4037x2019【解析】【分析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;(2)根据已知数据次数得出变化规律;(3)根据(1)(2)中数据规律得出即可;(4)利用(3)中所求即可得出答案【详解】(1)这组单项式的系数依次为:1,3,5,7,系数为奇数且奇次项为负数,故单项式的系数的符号是:(1)n,绝对值规律是:2n1;(2)这组单项式的次数的规律是从1开始的连续自然数(3)第n个单项式是:(1)n(2n1)xn(4)第2018个单项式是4035x2018,第2019个单项式是4037x2019【考点】此题主要考查了数字变化规律,得出次数与系数的变化规律是解题关键5、x2+2y2,【解析】【分析】先去小括号,再去中括号,合并同类项,最后代入求出即可【详解】2x2x2+2xy+2y22x2+2xy+4y22x2+x22xy2y22x2+2xy+4y2x2+2y2,当x,y1时,原式+2【考点】本题考查了整式的加减-化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键
Copyright@ 2020-2024 m.ketangku.com网站版权所有