1、七年级数学上册第三章整式及其加减定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、式子,0,a,中,下列结论正确的是()A有4个单项式,2个多项式B有3个单项式,3个多项式C有5个整式D以上答案均不
2、对2、用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A4cmB8cmC(a+4)cmD(a+8)cm3、的相反数是()ABCD4、下列关于多项式2a2b+ab-1的说法中,正确的是()A次数是5B二次项系数是0C最高次项是2a2bD常数项是15、当x=-1时,代数式2ax33bx+8的值为18,那么,代数式9b6a+2=()A28B28C32D326、代数式的正确解释是()A与的倒数的差的平方B与的差的平方的倒数C的平方与的差的倒数D的平方与的倒数的差7、下列各选项中,不是同类项的是()A和B和C6和D和
3、8、对于式子,下列说法正确的是()A有5个单项式,1个多项式B有3个单项式,2个多项式C有4个单项式,2个多项式D有7个整式9、下列代数式中单项式共有()A2个B4个C6个D8个10、关于多项式,下列说法正确的是()A次数是3B常数项是1C次数是5D三次项是第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、有理数a、b、c在数轴上的位置如图:化简:2、若多项式为三次三项式,则的值为_3、一组按规律排列的式子:,其中第7个式子是_,第n个式子是_(n为正整数)4、已知当时,代数式的值为20,则当时,代数式的值是_5、一个多项式M减去多项式,小马虎却误解为先加上这个多项式,结
4、果,得,则正确的结果是_三、解答题(5小题,每小题10分,共计50分)1、如图,将连续的奇数1,3,5,7按图1中的方式排成一个数表,用一个十字框框住5个数,这样框出的任意5个数(如图2)分别用a,b,c,d,x表示(1)若x=17,则a+b+c+d= (2)移动十字框,用x表示a+b+c+d= (3)设M=a+b+c+d+x,判断M的值能否等于2020,请说明理由2、(1)有一列数1、3、5、7有无数项(无数个数),请观察其规律后写出其中第20项(从左往右数第20个数)是 ,第n项是 ;(2)二算法是数学的一种很重要的方法,用二算法可以得到许多很重要的数学公式请观察下图,用二算法推导出13、
5、135、1357的计算结果,猜测1357(2n1)的计算结果;(3)由(2)推导出2462n的结果3、如图:在数轴上点A表示数a,点B表示数b,点C表示数c,数a是多项式的一次项系数,数b是最大的负整数,数c是单项式的次数(1)_,_,_(2)点A,B,C开始在数轴上运动,若点B和点C分别以每秒1个单位长度和每秒3个单位长度的速度向右运动,点A以每秒2个单位长度的速度向左运动,t秒过后,若点A与点B之间的距离表示为,点B与点C之间的距离表示为,则_,_(用含t的代数式表示)(3)试问:的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求出这个值4、计算:(1)(2)5、如图,从边长
6、为cm的正方形纸片中剪去一个边长为cm的正方形(),剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),求长方形的面积-参考答案-一、单选题1、A【解析】【分析】数与字母的乘积形式是单项式,单独一个数或一个字母是单项式,几个单项式的和是多项式【详解】解:是两个单项式的和,是多项式;是单项式;是3个单项式的和,是多项式:0,a是单项式;是单项式;不是整式,综上所述,单项式共有4个,多项式共有2个,整式共有6个,故选:A【考点】本题考查多项式、单项式的定义,是基础考点,掌握相关知识是解题关键2、B【解析】【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案【详解】原正方形的周长为a
7、cm,原正方形的边长为cm,将它按图的方式向外等距扩1cm,新正方形的边长为(+2)cm,则新正方形的周长为4(+2)=a+8(cm),因此需要增加的长度为a+8a=8cm,故选:B【考点】本题考查列代数式,解题的关键是根据题意表示出新正方形的边长及规范书写代数式3、D【解析】【分析】先根据相反数的定义,得到 ,再去掉括号,即可求解【详解】解:的相反数是故选:D【考点】本题主要考查了相反数的定义,去括号法则,理解相反数的定义是解题的关键4、C【解析】【分析】根据多项式的概念逐项分析即可【详解】A 多项式2a2b+ab-1的 次数是3,故不正确;B 多项式2a2b+ab-1的二次项系数是1,故不
8、正确;C 多项式2a2b+ab-1的最高次项是2a2b ,故正确;D 多项式2a2b+ab-1的常数项是-1,故不正确;故选:C【考点】本题考查了多项式的概念,几个单项式的和叫做多项式,多项式中的每个单项式都叫做多项式的项,其中不含字母的项叫做常数项,多项式的每一项都包括前面的符号,多项式中次数最高的项的次数叫做多项式的次数5、C【解析】【分析】首先根据当x1时,代数式2ax3-3bx+8的值为18,求出-2a+3b的值为10再把9b-6a+2改为3(-2a+3b)+2,最后将-2a+3b的值代入3(-2a+3b)+2中即可【详解】解:当x=-1时,代数式2ax3-3bx+8的值为18,-2a
9、+3b+8=18,-2a+3b=10,则9b-6a+2,=3(-2a+3b)+2,=310+2,=32,故选:C【考点】此题主要考查代数式求值,掌握整体代入的思想是解答本题的关键6、D【解析】【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来叙述时,要求既要表明运算的顺序,又要说出运算的最终结果【详解】解:代数式的正确解释是的平方与的倒数的差.故选:D.【考点】用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序具体说法没有统一规定,以简明而不引起误会为出发点7、B【解析】【分析】根据同类项的概念求解即可同类项:如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相
10、同,那么就称这两个单项式为同类项【详解】解:A、和是同类项,不符合题意;B、和不是同类项,符合题意;C、6和是同类项,不符合题意;D、和是同类项,不符合题意 故选:B【考点】此题考查了同类项的概念,解题的关键是熟练掌握同类项的概念同类项:如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项8、C【解析】【分析】分别利用多项式以及单项式的定义分析得出答案【详解】有4个单项式:,;2个多项式:共有6个整式综上,有4个单项式,2个多项式故选:C【考点】本题主要考查了多项式以及单项式,正确把握相关定义是解题关键9、C【解析】【分析】根据单项式的定义,即可得到答
11、案【详解】解:中,单项式有,共6个,故选C【考点】本题主要考查单项式的定义,掌握“数字和字母,字母和字母的乘积叫做单项式,单独的字母和数字也叫单项式”是解题的关键10、A【解析】【分析】根据多项式的项、次数等相关概念并结合多项式进行分析,再分别判断即可【详解】解:多项式2x2y3xy1,次数是3,常数项是1,三次项是2x2y,所以四个选项中只有A正确;故答案为:A【考点】本题考查了多项式的项的系数和次数定义的掌握情况解题的关键是弄清多项式次数、常数项的定义二、填空题1、【解析】【分析】根据、在数轴上的位置,进行绝对值的化简,然后合并【详解】解:由图可得,【考点】本题考查了绝对值、整式的加减,解
12、题的关键是掌握去括号法则和合并同类项法则2、【解析】【分析】由于多项式是关于x的三次三项式,所以| k+2|=3,k-10,根据以上两点可以确定k的值【详解】解:为三次三项式,| k+2|=3,k-10k=1或-5,k1,k=-5,故答案为:-5.【考点】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数3、 【解析】【分析】根据分子的变化得出分子变化的规律,根据分母的变化得出分母变化的规律,根据分数符号的变化规律得出分数符号的变化规律,即可得到该组式子的变化规律【详解】分子为b,指数为2,5,8,11,.,分子指数的规律为3n 1,分母为
13、a,指数为1,2,3,4,.,分母指数的规律为n,分数符号为-,+,-,+,.,其规律为,于是,第7个式子为,第n个式子为,故答案为:,【考点】此题考查了列代数式表示数字变化规律,先根据分子、分母的变化得出规律,再根据分式符号的变化得出规律是解题的关键4、-30【解析】【分析】先根据题意可得一个关于a、b的等式,用含b的式子表示a,把x=-2代入后,消去a求值即可得【详解】当 x=2 时,代数式 ax3+bx-5 的值为20,把x=2代入得 8a+2b-5=20,得8a+2b=25 ,当 x=2 时,代数式 ax3+bx-5 的值为-8a-2b-5 =-25-5=-30故答案为:-30【考点】
14、本题考查了代数式的求值,熟练掌握整体思想,消元思想是解题关键5、【解析】【分析】(1)根据题意可得,求出M,然后求出即可;(2)设,根据即,因此所求的.【详解】【方法1】由题意,得易得则正确的结果是【方法2】设,由题意,得,故,因此所求的则正确的结果是【考点】在整式运算应用过程中,我们可以发现,在尽量避免烦琐计算的同时要运用一些整体代入的思想,这样可以有效地将计算过程缩短,达到化繁为简的目的方法二在进行运算之前,先采用换元的思想将运算过程简化为,这样能在优化算法的同时减少计算量三、解答题1、(1)68(2)4x(3)M的值不能等于2020【解析】【分析】(1)直接求和;(2)a+b+c+d=(
15、x12)+(x2)+(x+2)+(x+12),化简即可;(3)令M=2020,则4x+x=2020,求出x,若x是奇数就说明成立,否则就不能为2020.【详解】观察图1,可知:a=x12,b=x2,c=x+2,d=x+12(1)当x=17时,a=5,b=15,c=19,d=29,a+b+c+d=5+15+19+29=68故答案为68(2)a=x12,b=x2,c=x+2,d=x+12,a+b+c+d=(x12)+(x2)+(x+2)+(x+12)=4x故答案为4x(3)M的值不能等于2020,理由如下:令M=2020,则4x+x=2020,解得:x=404404是偶数不是奇数,与题目x为奇数的
16、要求矛盾,M不能为2020【考点】本题考核知识点:观察总结规律. 解题关键点:用式子表示规律.2、(1)39; 2n1;(2) n2;(3)n2+n【解析】【分析】(1)由所给的数字可得第n个数为2n1,据此解答即可;(2)对所给的图形进行分析,总结出规律即可;(3)利用(2)的方式进行求解即可【详解】解:(1)一列数1、3、5、7,第n个数为:2n1,第20个数为:220139,故答案为:39,2n1;(2)第(2)图中,分层小正方形的个数是(1+3)个,而整体计算小正方形的个数是22,所以,1+322;第(3)图中,分层小正方形的个数是(1+3+5)个,而整体计算小正方形的个数是32,所以
17、,1+3+532;第(4)图中,分层小正方形的个数是(1+3+5+7)个,而整体计算小正方形的个数是42,所以,1+3+5+742;猜测1+3+5+7+(2n1)n2;(3)2+4+6+8+2n1+1+3+1+5+1+7+1+(2n1)+11+3+5+7+(2n1)+nn2+n【考点】本题主要考查数字的变化规律,解答的关键是由所给的数字分析清楚存在的规律3、 (1),(2);(3)值不变,结果为【解析】【分析】(1)由题意知,的一次项系数是,最大的负整数是,单项式的次数是,进而可知的值;(2)由题意知,A运动s后的位置表示为;B运动s后的位置表示为;C运动s后的位置表示为;进而可表示 ;(3)
18、由可知是定值(1)解:的一次项系数是,最大的负整数是,单项式的次数是,故答案为,(2)解:由题意知,A运动s后的位置表示为;B运动s后的位置表示为;C运动s后的位置表示为;,;故答案为;(3)解:是定值,不会随着时间t的变化而改,值为8【考点】本题考查了多项式的系数,单项式的次数,数轴上点的表示,数轴上两点之间的距离解题的关键在于用表示各点的位置4、 (1);(2)【解析】【分析】(1)移项,合并同类项,根据整式的运算法则计算即可;(2)去括号,移项,合并同类项,根据整式的运算法则计算即可(1)解:(2)解:【考点】本题考查去括号,移项,合并同类项,整式的运算法则,解题的关键是掌握去括号法则,整式的运算法则5、【解析】【分析】根据拼图的过程可得出长方形的长与宽,进而表示其面积即可【详解】由拼图可知,长方形的长为:cm,宽为:(cm),所以长方形的面积为:答:长方形的面积为【考点】本题考查整式加减的应用,理解拼图的过程,得出拼成长方形的长与宽是解决问题的关键
Copyright@ 2020-2024 m.ketangku.com网站版权所有