ImageVerifierCode 换一换
格式:DOCX , 页数:14 ,大小:165.60KB ,
资源ID:958808      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-958808-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(基础强化人教版八年级数学上册第十四章整式的乘法与因式分解单元测试试题(含答案及解析).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

基础强化人教版八年级数学上册第十四章整式的乘法与因式分解单元测试试题(含答案及解析).docx

1、八年级数学上册第十四章整式的乘法与因式分解单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、化简(a2)2a(5a)的结果是()Aa4B3a4C5a4Da242、已知a96,b314,c275,则a

2、、b、c的大小关系是()AabcBacbCcbaDbca3、把多项式分解因式正确的是()ABCD4、已知,则的值为()ABCD5、下列由左边到右边的变形,属于因式分解的是()A(a+5)(a5)a225Bmx+my+2m(x+y)+2Cx29(x+3)(x3)D6、已知4x2-2(k+1)x+1是一个完全平方式,则k的值为()A2B2C1D1或-37、如下列试题,嘉淇的得分是()姓名:嘉淇得分:将下列各式分解因式(每题20分,共计100分);A40分B60分C80分D100分8、已知被除式是x3+3x21,商式是x,余式是1,则除式是()Ax2+3x1Bx2+3xCx21Dx23x+19、计算

3、:的结果是()ABCD10、若,则的值分别为()A9,5B3,5C5,3D6,12第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若、互为相反数,c、d互为倒数,则_2、3108与2144的大小关系是_3、如图,王老师把家里的密码设置成了数学问题吴同学来王老师家做客,看到图片,思索了一会儿,输入密码,顺利地连接到了王老师家里的网络,那么她输入的密码是_账号:MrWangs house王浩阳密码4、现规定一种运算:,其中为实数,则_5、计算的结果等于_三、解答题(5小题,每小题10分,共计50分)1、因式分解:2、已知:x2y2=12,x+y=3,求2x22xy的值3、解

4、答下列问题:(1)已知,求的值;(2)若,求的值4、先化简,再求值:,其,5、先化简,再求值:,其中-参考答案-一、单选题1、A【解析】【分析】先根据完全平方公式和单项式乘多项式法则计算,再合并同类项即可求解.【详解】a(5a)=a+4.故选A.【考点】本题考查整式的混合运算,完全平方公式,关键是掌握完全平方公式.2、C【解析】【分析】根据幂的乘方可得:a=312,c=315,易得答案【详解】因为a=312,b,c=315,所以cba故选C3、B【解析】【详解】利用公式法分解因式的要点,根据平方差公式:,分解因式为:.故选B.4、A【解析】【分析】先利用已知条件得到x212x,利用整体代入得到

5、原式,利用多项式乘多项式得到原式,再将x212x代入进而可求得答案【详解】解:,故选:A【考点】本题考查了整体代入的方法,整式乘法的运算法则,灵活运用整体思想及熟练掌握整式乘法的运算法则是解决本题的关键5、C【解析】【详解】试题解析:把一个多项式分解成几个整式积的形式,叫因式分解,故选C.6、D【解析】【分析】利用完全平方公式的结构特征判断即可确定出k的值【详解】解:4x2-2(k+1)x+1是关于x的完全平方式,2(k+1)=4,解得:k=1或k=-3,故选:D【考点】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键7、A【解析】【分析】根据提公因式法及公式法分解即可【详解】,故该项

6、正确;,故该项错误;,故该项错误;,故该项错误;,故该项正确;正确的有:与共2道题,得40分,故选:A【考点】此题考查分解因式,将多项式写成整式乘积的形式,叫做将多项式分解因式,分解因式的方法:提公因式法、公式法,根据每道题的特点选择恰当的分解方法是解题的关键8、B【解析】【详解】分析:按照“被除式、除式、商式和余式间的关系”进行分析解答即可.详解:由题意可得,除式为:=.故选B.点睛:熟知“被除式、除式、商式和余式间的关系:被除式=除式商式+余式”是解答本题的关键.9、B【解析】【分析】根据乘方的意义消去负号,然后利用同底数幂的乘法计算即可【详解】解:原式故选B【考点】此题考查的是幂的运算性

7、质,掌握同底数幂的乘法法则是解题关键10、B【解析】【分析】根据积的乘方法则展开得出a3mb3n=a9b15,推出3m=9,3n=15,求出m、n即可【详解】解:(ambn)3=a9b15,a3mb3n=a9b15,3m=9,3n=15,m=3,n=5,故选B二、填空题1、-2【解析】【分析】利用相反数,倒数的性质确定出a+b,cd的值,代入原式计算即可求出值【详解】解:根据题意得:a+b=0,cd=1,则原式=0-2=-2故答案为:-2【考点】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键2、31082144【解析】【分析】把3108和2144化为指数相同的形式,然后比较底数的大

8、小.【详解】解:3108=(33)36=2736,2144=(24)36=1636,2716,27361636,即31082144.故答案为:31082144.【考点】本题考查了幂的乘方,解答本题的关键是掌握幂的乘方的运算法则.3、yang8888【解析】【分析】根据题中wifi密码规律确定出所求即可【详解】解:阳阳故答案为:yang8888【考点】此题考查了同底数幂相乘和幂的乘方,熟练掌握运算法则是解本题的关键4、y2y【解析】【分析】根据规定运算的运算方法,运算符号前后两数的积加上前面的数,再减去后面的数,列出算式,然后根据单项式乘多项式的法则计算即可【详解】解:xy(yx)y,xyxy(

9、yx)y(yx)y,y2y;故答案为:y2y【考点】本题考查了单项式乘多项式的运算和信息获取能力,读懂规定运算的运算方法并列出代数式是解题的关键5、【解析】【分析】根据同底数幂的乘法即可求得答案【详解】解:,故答案为:【考点】本题考查了同底数幂的乘法,熟练掌握计算方法是解题的关键三、解答题1、【解析】【分析】直接利用完全平方公式进行分解即可【详解】=【考点】本题考查了利用完全平方公式分解因式,熟记完全平方公式的结构特征是解题的关键2、2x22xy=28【解析】【分析】先求出xy=4,进而求出2x=7,而2x22xy=2x(xy),代入即可得出结论【详解】x2y2=12,(x+y)(xy)=12

10、,x+y=3,xy=4,+得,2x=7,2x22xy=2x(xy)=74=28【考点】本题考查了因式分解的应用,代数值求值,二元一次方程组的特殊解法等,求出x-y=4是解本题的关键.3、(1)1500;(2)27【解析】【分析】(1)先逆用积的乘方和幂的乘方运算法则,然后将已知代入即可解答;(1)先由得3x+4y=3,然后逆用积的乘方和幂的乘方运算法则将【详解】解:(1),;(2),【考点】本题考查了积的乘方和幂的乘方法则的逆用,灵活应用相关运算法则是解答本题的关键4、;2021【解析】【分析】先进行整式的化简求值运算,再将m、n数值代入求值即可【详解】当,n2020时,=2021【考点】本题考查了整式的混合运算和代数式求值,解答关键是按照相关法则进行计算5、1【解析】【分析】根据平方差公式、完全平方公式和分式的混合运算法则对原式进行化简,再把a值代入求解即可【详解】解:,原式【考点】本题考查分式的化简求值,熟练掌握平方差公式、完全平方公式和分式的混合运算法则是解题的关键

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1