1、人教版八年级数学上册第十五章分式同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知a为整数,且为正整数,求所有符合条件的a的值的和()A8B12C16D102、俗话说:“水滴石穿”,水滴不断地落
2、在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为的小洞,数据用科学记数法表示为()ABCD3、化简的结果是()AaBa+1Ca1Da214、已知,则分式与的大小关系是()ABCD不能确定5、若关于x的分式方程有增根,则m的值是()A1B1C2D26、下列各式从左到右变形正确的是()A+=3(x+1)+2yB=C=D=7、在一段坡路,小明骑自行车上坡的速度为每小时v1千米,下坡时的速度为每小时v2千米,则他在这段路上、下坡的平均速度是每小时()A千米B千米C千米D无法确定8、若a+b=5,则代数式(a)()的值为()A5B5CD9、已知,则代数式的值是()ABCD10、计算的结果是(
3、 )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算:=_2、计算的结果是_3、若关于x的方程无解,则m的值为_4、关于x的分式方程的解是正数,则a的取值范围是_5、全民齐心协力共建共享文明城区建设某服装加工厂计划为环卫工人生产1200套冬季工作服,在加工完480套后,工厂引进了新设备,结果工作效率比原计划提高了20%,结果共用54天完成了全部生产任务若设该加工厂原计划每天加工x套冬季工作服,则根据题意列方程为_三、解答题(5小题,每小题10分,共计50分)1、若分式有意义,求x的取值范围.2、若a0,M=,N=(1)当a=3时,计算M与N的值;(2)猜想M
4、与N的大小关系,并证明你的猜想3、先约分,再求值:其中4、计算:(1)(2)5、阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(JNplcr,1550-1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707-1783年)才发现指数与对数之间的联系对数的定义:一般地,若ax=N(a0,a1),那么x叫做以a为底N的对数,记作:x=logaN比如指数式24=16可以转化为4=log216,对数式2=log525可以转化为52=25我们根据对数的定义可得到对数的一个性质:loga(MN)=logaM+logaN(a0,a1,M0,N0);理由如下:设log
5、aM=m,logaN=n,则M=am,N=anMN=aman=am+n,由对数的定义得m+n=loga(MN)又m+n=logaM+logaNloga(MN)=logaM+logaN解决以下问题:(1)将指数43=64转化为对数式: .(2)仿照上面的材料,试证明: =(a0,al,M0,N0).(3) 拓展运用:计算log32+log36-log34=_.-参考答案-一、单选题1、C【解析】【分析】首先对于分式进行化简,然后根据a为整数、分式值为正整数可求出a的值,最后将a的所有值相加即可【详解】解:,a为整数,且分式的值为正整数,a51,5,a6,10,所有符合条件的a的值的和:6+101
6、6故选:C【考点】本题考查了分式的混合运算,对分式的分子和分母能够正确分解因式是解题的关键2、A【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:,故选:A【考点】本题考查了用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定3、B【解析】【分析】先把原式转化成同分母的分式,然后相加,运用平方差公式把分子因式分解,然后分子分母同时除以公因式(a-1)即可.【详解】解:原式= ,故本
7、题答案为:B.【考点】分式的化简是本题的考点,运用平方差公式把分子进行因式分解找到分子分母的公因式是解题的关键.4、A【解析】【分析】将两个式子作差,利用分式的减法法则化简,即可求解【详解】解:,故选:A【考点】本题考查分式的大小比较,掌握作差法是解题的关键5、C【解析】【分析】先把分式方程化为整式方程,再把增根x=2代入整式方程,即可求解【详解】解:,去分母得:,关于x的分式方程有增根,增根为:x=2,即:m=2,故选C【考点】本题主要考查解分式方程以及分式方程的增根,把分式方程化为整式方程是解题的关键6、C【解析】【分析】根据分式的性质逐项分析即可A选项分子分母同时乘以6,B选项分子分母同
8、时乘以100,C选项分子分母同时乘以-1,D选项分子因式分解【详解】A+=, 故该选项不正确,不符合题意;B=, 故该选项不正确,不符合题意;C=,故该选项正确,符合题意;D=,故该选项不正确,不符合题意;故选C【考点】本题考查了分式的性质,掌握分式的性质是解题的关键7、C【解析】【详解】平均速度=总路程总时间,题中没有单程,可设单程为1,那么总路程为2依题意得:2()=2=千米故选C【考点】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系当题中没有一些必须的量时,为了简便,可设其为18、B【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,
9、把已知等式代入计算即可求出值【详解】a+b=5,原式 故选:B【考点】考查分式的化简求值,掌握减法法则以及除法法师是解题的关键,注意整体代入法在解题中的应用9、D【解析】【分析】利用等式的性质对变形可得,利用分式的性质对变形可得,从而代入求值即可【详解】由条件可知,即:,根据分式的性质得:,将代入上式得:原式,故选:D【考点】本题主要考查分式的化简求值,熟练掌握分式的运算是解题的关键10、A【解析】【分析】直接利用分式的加减运算法则计算得出答案【详解】原式,故选:A【考点】本题考查分式的加减运算法则,比较基础二、填空题1、3【解析】【分析】先计算负整数指数幂和算术平方根,再计算加减即可求解【详
10、解】原式523,故答案为:3【考点】此题考查了实数的运算,负整数指数幂,熟练掌握运算法则是解本题的关键2、 【解析】【详解】【分析】根据分式的加减法法则进行计算即可得答案【详解】原式=,故答案为.【考点】本题考查分式的加减运算,熟练掌握分式加减的运算法则是解题的关键,本题属于基础题.3、-1或5或【解析】【分析】直接解方程再利用一元一次方程无解和分式方程无解分别分析得出答案.【详解】去分母得:,可得:,当时,一元一次方程无解,此时,当时,则,解得:或.故答案为:或或.【考点】此题主要考查了分式方程的解,正确分类讨论是解题关键.4、且【解析】【分析】先解分式方程得到,再结合分式方程的解是正数以及
11、分式有意义的条件求解即可【详解】解:去分母得:,去括号得:,移项得:,合并、系数化为1得:,关于x的分式方程的解是正数,且,故答案为:且【考点】本题主要考查了根据分式方程解的情况求参数,熟知解分式方程的方法是解题的关键5、【解析】【分析】设该加工厂原计划每天加工x套冬季工作服,则实际每天加工套,则按原计划的效率加工天,按提高后的工作效率加工天,从而可得答案【详解】解:设该加工厂原计划每天加工x套冬季工作服,则提高效率后每天加工套, 故答案为:【考点】本题考查的是分式方程的应用,掌握利用分式方程解决工作量问题是解题的关键三、解答题1、【解析】【分析】先把除法化为乘法,再根据分式有意义的条件即可得
12、到结果【详解】,x+20且x+40且x+30,解得:x2、3、4【考点】本题主要考查了分式有意义的条件,关键是注意分式所有的分母部分均不能为0,分式才有意义2、所以 a4,b 【考点】本题考查了绝对值、二次根式和分式的性质,根据题意求出a,b的值是解题关键.8(1)M,N;(2)MN;证明见解析.【解析】【分析】(1)直接将a=3代入原式求出M,N的值即可;(2)直接利用分式的加减以及乘除运算法则,进而合并求出即可【详解】(1)当a=3时,M,N;(2)方法一:猜想:MN理由如下:MNa0,a+20,a+30,MN0,MN;方法二:猜想:MN理由如下:a0,M0,N0,a2+4a+30,MN【
13、考点】本题考查了分式的加减以及乘除运算,正确通分得出是解题的关键3、【解析】【分析】先把分式的分子分母分解因式,约分后把a、b的值代入即可求出答案【详解】解:原式= = 当时原式=【考点】本题考查了分式的约分,解题的关键是熟练进行分式的约分,本题属于基础题型4、(1);(2)【解析】【分析】(1)原式先化简绝对值、二次根式以及立方根,然后再进行外挂;(2)原式先计算括号内的,再把除法转化为乘法,再进行约分即可【详解】解:(1)=;(2) =【考点】本题主要考查了实数的混合运算以及分式的加减乘除混合运算,掌握运算法则是解答本题的关键5、(1)3=log464;(2)见解析;(3)1【解析】【分析
14、】(1)根据题意可以把指数式43=64写成对数式;(2)先设logaM=m,logaN=n,根据对数的定义可表示为指数式为:M=am,N=an,计算的结果,同理由所给材料的证明过程可得结论;(3)根据公式:loga(MN)=logaM+logaN和loga=logaM-logaN的逆用,将所求式子表示为:log3(264),计算可得结论【详解】(1)由题意可得,指数式43=64写成对数式为:3=log464,故答案为3=log464;(2)设logaM=m,logaN=n,则M=am,N=an,=am-n,由对数的定义得m-n=loga,又m-n=logaM-logaN,loga=logaM-logaN(a0,a1,M0,N0);(3)log32+log36-log34,=log3(264),=log33,=1,故答案为1【考点】此题考查整式的混合运算,解题的关键是明确新定义,明白指数与对数之间的关系与相互转化关系.
Copyright@ 2020-2024 m.ketangku.com网站版权所有