1、人教版八年级数学上册第十五章分式同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知 ,则 的值是()ABC2D-22、若,则下列等式不成立的是()ABCD3、若分式 的值为0,则x 的值是()A
2、2B0C-2D-54、已知5x=3,5y=2,则52x3y=()AB1CD5、化简的结果是()ABCD6、分式化简后的结果为()ABCD7、已知m2n2nm2,则的值是()A1B0C1D8、下列运算正确的是()Aa3a2aB(2ab)24a2b2C-3a-2a2-3D(3a3b)26a6b29、若a+b=5,则代数式(a)()的值为()A5B5CD10、约分:()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小
3、时采样x人,则可列分式方程为_2、某校学生捐款支援地震灾区,第一次捐款的总额为6600元,第二次捐款的总额为7260元,第二次捐款的总人数比第一次多30人,而且两次人均捐款额恰好相等,则第一次捐款的总人数为_人3、_.4、若(x+1)0=1,则x的取值范围是_5、若关于x的分式方程+ = 2m无解,则m的值为_三、解答题(5小题,每小题10分,共计50分)1、计算:(要求(4)利用乘法公式计算)(1)(2)(3)(4)2、解分式方程(1)(2)3、接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每天生产疫苗16万剂,但受某些因素影响,有10名工人不能按时到厂为
4、了应对疫情,回厂的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天只能生产疫苗15万剂(1)求该厂当前参加生产的工人有多少人?(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时若上级分配给该厂共760万剂的生产任务,问该厂共需要多少天才能完成任务?4、某校初二年级的甲、乙两个班的同学以班级为单位分别乘坐大巴车去某基地参加拓展活动,此基地距离该校90千米,甲班的甲车出发15分钟后,乙班的乙车才出发,结果他们同时到达已知乙车的平均速度是甲车的平均速度的1.2倍,求甲车的平均速度5、先化简,再求值:,且x为满足3x2的整数-参考答案-一、单选
5、题1、C【解析】【分析】将条件变形为,再代入求值即可得解【详解】解:,故选:C【考点】本题主要考查了分式的化简,将条件变形为是解答本题的关键2、D【解析】【分析】设,则、,分别代入计算即可【详解】解:设,则、,A,成立,不符合题意;B,成立,不符合题意;C. ,成立,不符合题意;D. ,不成立,符合题意;故选:D【考点】本题考查了等式的性质,解题关键是通过设参数,得到x、y、z的值,代入判断3、A【解析】【分析】根据分式的值为0的条件:分子为0且分母不为0,得出混合组,求解得出x的值【详解】解: 根据题意得 :x-2=0,且x+50,解得 x=2故选:A【考点】本题考查了分式的值为零的条件分式
6、值为零的条件是分子等于零且分母不等于零4、D【解析】【详解】分析:首先根据幂的乘方的运算方法,求出52x、53y的值;然后根据同底数幂的除法的运算方法,求出52x3y的值为多少即可详解:5x=3,5y=2,52x=32=9,53y=23=8,52x3y=故选D点睛:此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:底数a0,因为0不能做除数;单独的一个字母,其指数是1,而不是0;应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么5、D【解析】【分析】最简公分母为,通分后求和即
7、可【详解】解:的最简公分母为,通分得故选D【考点】本题考查了分式加法运算解题的关键与难点是找出通分时分式的最简公分母6、B【解析】【分析】根据异分母分式相加减的运算法则计算即可异分母分式相加减,先通分,再根据同分母分式相加减的法则计算【详解】解:故选:B【考点】本题主要考查了分式的加减,熟练掌握分式通分的方法是解答本题的关键7、C【解析】【详解】分析:首先进行移项,然后转化为两个完全平方式,根据非负数的性质求出m和n的值,然后代入所求的代数式得出答案详解:,解得:m=2,n=2,故选C点睛:本题主要考查的是非负数的性质以及代数式的求值,属于中等难度的题型将代数式转化为两个完全平方式是解决这个问
8、题的关键8、C【解析】【分析】根据合并同类项,完全平方公式,同底数幂相乘,积的乘方法则,逐项判断即可求解【详解】解:A、和不是同类项,无法合并,故本选项错误,不符合题意;B、,故本选项错误,不符合题意;C、-3a-2a2-3,故本选项正确,符合题意;D、(3a3b)29a6b2,故本选项错误,不符合题意;故选:C【考点】本题主要考查了合并同类项,完全平方公式,同底数幂相乘,积的乘方法则,熟练掌握相关运算法则是解题的关键9、B【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值【详解】a+b=5,原式 故选:B【考点】考查分式的化简求值
9、,掌握减法法则以及除法法师是解题的关键,注意整体代入法在解题中的应用10、A【解析】【分析】先进行乘法运算,然后约去分子分母的公因式即可得到答案.【详解】原式=,故选A.【考点】本题主要考查分式的乘法运算法则,掌握约分,是解题的关键.二、填空题1、【解析】【分析】先表示乙每小时采样(x-10)人,进而得出甲采样160人和乙采样140人所用的时间,再根据时间相等列出方程即可【详解】根据题意可知乙每小时采样(x-10)人,根据题意,得故答案为:【考点】本题主要考查了列分式方程,确定等量关系是列方程的关键2、300【解析】【分析】先设第一次的捐款人数是x人,根据两次人均捐款额恰好相等列出方程,求出x
10、的值,再进行检验即可求出答案【详解】解:设第一次的捐款人数是x人,根据题意得:,解得:x300,经检验x300是原方程的解,故答案为300【考点】此题考查了分式方程的应用,解题的关键是读懂题意,找出之间的等量关系,列出方程,解分式方程时要注意检验3、a【解析】【详解】原式=.故答案为.4、x1【解析】【详解】由题意得:x+10,解得:x-1,故答案为:x-1【考点】本题考查了零指数幂,解题的关键是熟知任何非零数的0次幂都等于15、或1【解析】【分析】方程无解分两种情况:方程的根是增根去分母后的整式方程无解,去分母后分情况讨论即可.【详解】去分母得:x-4m=2m(x-4)若方程的根是增根,则增
11、根为x=4把x=4代入得:4-4m=0解得:m=1去分母得:x-4m=2m(x-4)整理得:(2m-1)x=4m方程无解,故2m-1=0解得:m= m的值为或1故答案为:或1【考点】本题考查的是分式方程的无解问题,注意无解的两种情况是解答的关键.三、解答题1、(1);(2);(3);(4)【解析】【分析】(1)先运用幂的乘方运算法则化简,再结合幂的乘除运算法则求解即可;(2)根据单项式的乘除运算法则求解即可;(3)利用幂的相关运算法则化简,再结合有理数的运算法则求解即可;(4)利用平方差公式进行简便计算即可【详解】解:(1)原式(2)原式(3)原式(4)原式【考点】本题考查幂的混合运算,单项式
12、乘除法的混合运算,以及利用乘法公式进行简便计算等,掌握基本的运算法则,以及运算顺序是解题关键2、(1)x=-2;(2)无解【解析】【分析】(1)观察可得最简公分母是2(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解(2)观察可得最简公分母是(x+2)(x-2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解【详解】解:经检验时,是原分式方程的解; 经检验时,不是原分式方程的解;原分式方程无解;【考点】本题考查了分式方程的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解(2)解分式方程一定注意要验根3、(1)30人;(2)39天【解析】【
13、分析】(1)设当前参加生产的工人有人,根据每人每小时完成的工作量不变列出关于的方程,求解即可;(2)设还需要生产天才能完成任务根据前面4天完成的工作量后面天完成的工作量760列出关于的方程,求解即可【详解】解:(1)设当前参加生产的工人有x人,依题意得:,解得:,经检验,是原方程的解,且符合题意答:当前参加生产的工人有30人(2)每人每小时的数量为(万剂)设还需要生产y天才能完成任务,依题意得:,解得:,(天)答:该厂共需要39天才能完成任务【考点】本题考查分式方程的应用和一元一次方程的应用,分析题意,找到合适的数量关系是解决问题的关键4、甲车的平均速度是60千米/时【解析】【分析】设甲车的平
14、均速度是千米/时,则乙车的平均速度是千米/时,由题意:此基地距离该校90千米,甲班的甲车出发15分钟后,乙班的乙车才出发,结果他们同时到达,列出分式方程,求解即可【详解】解:设甲车的平均速度是千米/时,则乙车的平均速度是千米/时, 根据题意,得, 解得经检验,是原方程的解, 答:甲车的平均速度是60千米/时【考点】本题考查了分式方程的应用,找到合适的等量关系,正确列出分式方程是解题的关键5、2x3,-5【解析】【分析】根据分式的运算法则即可求出答案【详解】原式=+=(+)x=x1+x2=2x3由于x为满足3x2的整数,x0且x1且x2,所以x=1,原式=23=5【考点】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型
Copyright@ 2020-2024 m.ketangku.com网站版权所有