ImageVerifierCode 换一换
格式:DOCX , 页数:29 ,大小:575.02KB ,
资源ID:958688      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-958688-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(基础强化人教版八年级数学上册第十二章全等三角形章节训练试卷(解析版含答案).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

基础强化人教版八年级数学上册第十二章全等三角形章节训练试卷(解析版含答案).docx

1、八年级数学上册第十二章全等三角形章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,观察图中尺规作图的痕迹,可知的度数为()ABCD2、如图,已知,则的长为()A7B3.5C3D23、如图

2、,在ABC和DEF中,ABDE,ABDE,运用“SAS”判定ABCDEF,需补充的条件是()AACDFBADCBECFDACBDFE4、如图,在和中,点,在同一直线上,只添加一个条件,能判定的是()ABCD5、如图,在中,垂足分别为D,E,交于点H,已知,则的长是()A1BC2D6、如图,在ABC中,C=90,点D在AC上,DEAB,若CDE=165,则B的度数为()A15B55C65D757、如图,C为线段AE上一动点(不与点,重合),在AE同侧分别作等边三角形ABC和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ以下结论错误的是()AAOB=60BA

3、P=BQCPQAEDDE=DP8、如图,在中,点D是BC边上一点,已知,CE平分交AB于点E,连接DE,则的度数为()ABCD9、已知:如图,12,则不一定能使ABDACD的条件是 ( )AABACBBDCDCBCDBDACDA10、已知,如图,在ABC中,D为BC边上的一点,延长AD到点E,连接BE、CE,ABD+3=90,1=2=3,下列结论:ABD为等腰三角形;AE=AC;BE=CE=CD;CB平分ACE其中正确的结论个数有()A1个B2个C3个D4个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知AOB60,OC是AOB的平分线,点D为OC上一点,过D作直线

4、DEOA,垂足为点E,且直线DE交OB于点F,如图所示若DE2,则DF_2、如图,在中,AD是的角平分线,过点D作,若,则_3、如图,在RtABC中,B=90,以顶点C为圆心、适当长为半径画弧,分别交AC、BC于点E、F,再分别以点E、F为圆心,以大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D若BD=4,AC=16,则ACD的面积是_4、如图,已知在四边形中,厘米,厘米,厘米,点为线段的中点如果点在线段上以3厘米/秒的速度由点向点运动,同时,点在线段上由点向点运动当点的运动速度为_厘米/秒时,能够使与以,三点所构成的三角形全等5、如图,在和中,点B、E、C、F在同一条直线上,且,

5、请你再添加一个适当的条件:_,使三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC中,ABAC ,ABAC,DE是过点A的直线,BDDE于D,CEDE于点E;(1)若B、C在DE的同侧(如图1所示)求证:DEBDCE;(2)若B、C在DE的两侧(如图2所示),其他条件不变,则DE,BD,CE具有怎样的等量关系?写出等量关系,不需证明2、如图,在四边形ABCD中,已知BD平分ABC,BADC180,求证:ADCD3、如图,点B、C、D在同一直线上,ABC、ADE是等边三角形,CE5,CD2(1)证明:ABDACE;(2)求ECD的度数;(3)求AC的长4、如图,点A,F,E,D在一

6、条直线上,AFDE,CFBE,ABCD求证BECF5、已知RtABC中,BAC=90,AB=AC,点E为ABC内一点,连接AE,CE,CEAE,过点B作BDAE,交AE的延长线于D(1)如图1,求证BD=AE;(2)如图2,点H为BC中点,分别连接EH,DH,求EDH的度数;(3)如图3,在(2)的条件下,点M为CH上的一点,连接EM,点F为EM的中点,连接FH,过点D作DGFH,交FH的延长线于点G,若GH:FH=6:5,FHM的面积为30,EHB=BHG,求线段EH的长-参考答案-一、单选题1、C【解析】【分析】利用等腰三角形的性质和基本作图得到,则平分,利用和三角形内角和计算出,从而得到

7、的度数.【详解】由作法得,平分,故选C【考点】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了等腰三角形的性质.2、C【解析】【分析】利用全等三角形的性质求解即可【详解】解:ABCDAE,AC=DE=5,AE=BC=2,CE=AC-AE=3,故选C【考点】本题主要考查了全等三角形的性质,熟知全等三角形对应边相等是解题的关键3、C【解析】【分析】证出ABCDEF,由SAS即可得出结论【详解】解:补充BECF,理由如下:ABDE,ABCDEF,若要利用SAS判定,B、D选项不符合要

8、求,若A:AC=DF,构成的是SSA,不能证明三角形全等,A选项不符合要求,C选项:BE=CF,BECF,BCEF,在ABC和DEF中,ABCDEF(SAS),故选:C【考点】此题主要考查全等三角形的判定,解题的关键是熟知“SAS”的判定的特点4、B【解析】【分析】根据三角形全等的判定做出选择即可【详解】A、,不能判断,选项不符合题意;B、,利用SAS定理可以判断,选项符合题意;C、,不能判断,选项不符合题意;D、,不能判断,选项不符合题意;故选:B【考点】本题考查三角形全等的判定,根据SSS、SAS、ASA、AAS判断三角形全等,找出三角形全等的条件是解答本题的关键5、A【解析】【分析】利用

9、“八字形”图形推出EAH=ECB,根据,EH=3,求出AE=4,证明AEHCEB,得到AE=CE=4,即可求出CH【详解】解:,CEB=,AHE=CHD,EAH=ECB,EH=3,AE=4,AEH=CEB,EAH=ECB,EH=BE,AEHCEB,AE=CE=4,CH=CE-EH=4-3=1,故选A【考点】此题考查了全等三角形的判定及性质,“八字形”图形的应用,熟记全等三角形的判定定理是解题的关键6、D【解析】【分析】根据邻补角定义可得ADE=15,由平行线的性质可得A=ADE=15,再根据三角形内角和定理即可求得B=75【详解】解:CDE=165,ADE=15,DEAB,A=ADE=15,B

10、=180CA=1809015=75,故选D【考点】本题考查了平行线的性质、三角形内角和定理等,熟练掌握平行线的性质以及三角形内角和定理是解题的关键7、D【解析】【分析】利用等边三角形的性质,BCDE,再根据平行线的性质得到CBE=DEO,于是AOB=DAC+BEC=BEC+DEO=DEC=60,得出A正确;根据CQBCPA(ASA),得出B正确;由ACDBCE得CBE=DAC,加之ACB=DCE=60,AC=BC,得到CQBCPA(ASA),再根据PCQ=60推出PCQ为等边三角形,又由PQC=DCE,根据内错角相等,两直线平行,得出C正确;根据CDE=60,DQE=ECQ+CEQ=60+CE

11、Q,可知DQECDE,得出D错误【详解】解:等边ABC和等边CDE,AC=BC,CD=CE,ACB=DCE=60,ACB+BCD=DCE+BCD,即ACD=BCE,在ACD与BCE中,ACDBCE(SAS),CBE=DAC,又ACB=DCE=60,BCD=60,即ACP=BCQ,又AC=BC,在CQB与CPA中,CQBCPA(ASA),CP=CQ,又PCQ=60可知PCQ为等边三角形,PQC=DCE=60,PQAE,故C正确,CQBCPA,AP=BQ,故B正确,AD=BE,AP=BQ,AD-AP=BE-BQ,即DP=QE,DQE=ECQ+CEQ=60+CEQ,CDE=60,DQECDE,故D错

12、误;ACB=DCE=60,BCD=60,等边DCE,EDC=60=BCD,BCDE,CBE=DEO,AOB=DAC+BEC=BEC+DEO=DEC=60,故A正确故选:D【考点】本题考查了等边三角形的性质、全等三角形的判定与性质,利用旋转不变性,解题的关键是找到不变量8、B【解析】【分析】过点E作于M,于N,于H,如图,先计算出,则AE平分,根据角平分线的性质得,再由CE平分得到,则,于是根据角平分线定理的逆定理可判断DE平分,再根据三角形外角性质解答即可【详解】解:过点E作于M,于N,于H,如图,平分,平分,平分,由三角形外角可得:,而,故选:B【考点】本题考查了角平分线的性质和判定定理,三

13、角形的外角性质定理,解决本题的关键是运用角平分线定理的逆定理证明DE平分9、B【解析】【分析】利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案【详解】解:A、1=2,AD为公共边,若AB=AC,则ABDACD(SAS);故A不符合题意;B、1=2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定ABDACD;故B符合题意;C、1=2,AD为公共边,若B=C,则ABDACD(AAS);故C不符合题意;D、1=2,AD为公共边,若BDA=CDA,则ABDACD(ASA);故D不符合题意故选B10、C【解析】【分析】作AF平分BAD可根据证ABFADF,推出A

14、B=AD,得出ABD为等腰三角形;可根据同弦所对的圆周角相等知点A、B、C、E共圆,可判出BE=CE=CD,根据三角形内角和等于180,可判出AE=AC;求出7=902,根据1=4=2推出47,即可得出BC不是ACE的平分线【详解】解:作AF平分BAD,BAD=3,ABD+3=90,BAF=3=DAF,ABF+BAF=90AFB=AFD=90,在BAF和DAF中ABFADF(ASA),AB=AD,故正确;AEAC,64790,5ADBABD90,12,5690CECD,4180561802(90)1,13,43,BECE,BECECD,正确;6+2+ACE=180,6=5=ADB=ABD=90

15、2ACE=18062=902,ACE=6,AE=CE,故正确5=2+7=902,7=902,BAD=4=2,47,故错误;故选C【考点】本题主要考查了全等三角形的判定和性质、同弦所对的圆周角相等、三角形内角和的相关知识,灵活运用所学知识是解题的关键二、填空题1、4【解析】【分析】过点D作DMOB,垂足为M,则DM=DE=2,在RtOEF中,利用三角形内角和定理可求出DFM=30,在RtDMF中,由30角所对的直角边等于斜边的一半可求出DF的长,此题得解【详解】过点D作DMOB,垂足为M,如图所示OC是AOB的平分线,DMDE2在RtOEF中,OEF90,EOF60,OFE30,即DFM30在R

16、tDMF中,DMF90,DFM30,DF2DM4故答案为4【考点】本题考查了角平分线的性质、三角形内角和定理以及含30度角的直角三角形,利用角平分线的性质及30角所对的直角边等于斜边的一半,求出DF的长是解题的关键2、7【解析】【分析】先利用角平分线性质证明CD=DE,再求出的值即可【详解】解:AD平分BAC交BC于点D,DEAB,CD=ED,BD+CD=7,故答案为:7【考点】本题主要考查了角平分线的性质,解题的关键是熟练掌握角平分线的性质3、32【解析】【分析】过点D作DQAC,由作法可知CP是角平分线,根据角平分线的性质知DB=DQ=3,再由三角形的面积公式计算即可【详解】解:如图,过点

17、D作DQAC于点Q,由作图知CP是ACB的平分线,B=90,BD=4,DB=DQ=4,AC=16,SACD=ACDQ=,故答案为32【考点】本题主要考查作图-基本作图,三角形面积,解题的关键是掌握角平分线的尺规作图及角平分线的性质4、3或【解析】【分析】分两种情况讨论,依据全等三角形的对应边相等,即可得到点Q的运动速度【详解】解:设点P运动的时间为t秒,则BP3t,CP83t,BC,当BECP6,BPCQ时,BPE与CQP全等,此时,683t,解得t,BPCQ2,此时,点Q的运动速度为23厘米/秒;当BECQ6,BPCP时,BPE与CQP全等,此时,3t83t,解得t,点Q的运动速度为6厘米/

18、秒;故答案为:3或【考点】本题考查了全等三角形的性质和判定的应用,解题的关键是掌握全等三角形的对应边相等5、或或【解析】【分析】根据全等三角形的判定即可求解【详解】解:根据定理,即,可得;根据定理,即,可得;若,则,则根据定理,即可得;综上所述,添加一个适当的条件:或或,故答案为:或或(答案不唯一)【考点】本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键三、解答题1、 (1)见解析(2)DE=CE-BD【解析】【分析】(1)根据AAS证明ADBCEA,可以得出BD=AE,AD=CE,由DE=AD+AE就可以得出结论;(2)由条件可以得出ADB=CEA=90,BAD=ACE,

19、再由AB=AC就可以得出ADBCEA,就可以得出BD=AE,AD=CE,由DE=AD+AE就可以得出DE=CE-BD(1)ABAC , BDDE, CEDEBAC=90,ADB=AEC=90ACE+CAE=90,BAD+CAE=90,BAD=ACE,在ADC与BEC中,ADBAEC90, BADACE, AB=AC,ADBCEA(AAS),AD=CE,BD=AE,DE=AD+AE,DE=BD+CE;(2)DE=CE-BD理由:BDAD,CEAD,ADB=CEA=90ABAC , BAD+CAE=90CAE+ACE=90,BAD=ACE在ADB和CEA中,ADBCEA(AAS),BD=AE,AD

20、=CEAD=AE+ED,DE=AD-AE=CE-BD【考点】本题考查了等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是解答本题的关键2、见解析【解析】【详解】试题分析:在边BC上截取BE=BA,连接DE,根据SAS证ABDEBD,推出AD=ED,A=BED,求出DEC=C即可试题解析:证明:在边BC上截取BE=BA,连接DEBD平分ABC,ABD=CBD在ABD和EBD中,ABDEBD (SAS),AD=ED,A=BEDA+C=180,BED+CED=180,C=CED,CD=ED,AD=CD点睛:本题考查了等腰三角形的判定,全等三角形的性质和判定等知识点的应用

21、,解答此题的关键是正确作辅助线,又是难点,解题的思路是把AD和CD放到一个三角形中,根据等腰三角形的判定进行证明,题型较好,有一定的难度3、 (1)见解析(2)60(3)3【解析】【分析】(1)根据等边三角形的性质利用SAS证明;(2)利用全等三角形的性质得到B=ACE=60,计算即可得到答案;(3)利用全等的性质得到BD的长,再由等边三角形的性质,即可得到AC的长(1)证明:ABC和ADE是等边三角形,AD=AE,AB=AC,BAC=DAE=ACB=60,BAD=CAE,ABDACE;(2)解:ABDACE,B=ACE=60,DCE=180ACBACE=60;(3)解:ABDACE,BD=C

22、E=5,BC=BDCD=52=3,AC=BC=3【考点】此题考查了全等三角形的判定及性质,熟记全等三角形的几种判定定理:SSS,SAS,ASA,AAS,HL,并熟练应用是解题的关键4、证明见解析【解析】【分析】根据线段的和差关系可得AEDF,根据平行线的性质可得DA,CFDBEA,利用ASA可证明ABEDCF,根据全等三角形的性质即可得结论【详解】AFDE,AFEFDEEF,即AEDF,AB/CD,DA,CF/BE,CFDBEA,在ABEDCF中,ABEDCF,BECF【考点】本题考查平行线的性质及全等三角形的判定与性质,熟练掌握相关性质及判定定理是解题关键5、(1)见解析;(2)EDH45;

23、(3)EH10【解析】【分析】(1)根据全等三角形的判定得出CAEABD,进而利用全等三角形的性质得出AEBD即可;(2)根据全等三角形的判定得出AEHBDH,进而利用全等三角形的性质解答即可;(3)过点M作MSFH于点S,过点E作ERFH,交HF的延长线于点R,过点E作ETBC,根据全等三角形判定和性质解答即可【详解】证明:(1)CEAE,BDAE,AECADB90,BAC90,ACE+CAECAE+BAD90,ACEBAD,在CAE与ABD中CAEABD(AAS),AEBD;(2)连接AHABAC,BHCH,BAH,AHB90,ABHBAH45,AHBH,EAHBAHBAD45BAD,DB

24、H180ADBBADABH45BAD,EAHDBH,在AEH与BDH中AEHBDH(SAS),EHDH,AHEBHD,AHE+EHBBHD+EHB90即EHD90,EDHDEH;(3)过点M作MSFH于点S,过点E作ERFH,交HF的延长线于点R,过点E作ETBC,交HR的延长线于点TDGFH,ERFH,DGHERH90,HDG+DHG90DHE90,EHR+DHG90,HDGHER在DHG与HER中 DHGHER (AAS),HGER,ETBC,ETFBHG,EHBHET,ETFFHM,EHBBHG,HETETF,HEHT,在EFT与MFH中,EFTMFH(AAS),HFFT,ERMS,HGERMS,设GH6k,FH5k,则HGERMS6k,k,FH5,HEHT2HF10【考点】本题考查全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会利用数形结合的思想思考问题,属于压轴题

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1