1、八年级数学上册第十二章全等三角形同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将ABC分为三个三角形,则SABO:SBC
2、O:SCAO等于()A1:1:1B1:2:3C2:3:4D3:4:52、如图为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得ABC65,ACB35,然后在M处立了标杆,使MBC65,MCB35,得到MBCABC,所以测得MB的长就是A,B两点间的距离,这里判定MBCABC的理由是()ASASBAAACSSSDASA3、如图,在ABC和DEF中,ABDE,ABDE,运用“SAS”判定ABCDEF,需补充的条件是()AACDFBADCBECFDACBDFE4、已知图中的两个三角形全等,AD与CE是对应边,则A的对应角是( )ABCD5、下列说法正确的是()A两个长方形是全等图形
3、B形状相同的两个三角形全等C两个全等图形面积一定相等D所有的等边三角形都是全等三角形6、已知AOB60,以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在AOB内交于点P,以OP为边作POC15,则BOC的度数为()A15B45C15或30D15或457、如图,点O是ABC中BCA,ABC的平分线的交点,已知ABC的面积是12,周长是8,则点O到边BC的距离是()A1B2C3D48、如图,ABC是边长为4的等边三角形,点P在AB上,过点P作PEAC,垂足为E,延长BC至点Q,使CQPA,连接PQ交AC于点D,则DE的长为()A1B1
4、.8C2D2.59、如图,在中,D是上一点,于点E,连接,若,则等于()ABCD10、若ABCDEF,且ABC的周长为20,AB=5,BC=8,则DF长为( )A5B8C7D5或8第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知BEDC,请添加一个条件,使得ABEACD:_2、如图,在中,F是高AD和BE的交点,cm,则线段BF的长度为_3、如图,已知AD是ABC的中线,E是AC上的一点,BE交AD于F,ACBF,DAC24,EBC32,则ACB_4、如图,若,则到的距离为_5、如图,MNPQ,ABPQ,点A,D,B,C分别在直线MN和PQ上,点E在AB上,A
5、DBC7,ADEB,DEEC,则AB_三、解答题(5小题,每小题10分,共计50分)1、如图,在等腰三角形ABC中,A=90,AB=AC=6,D是BC边的中点,点E在线段AB上从B向A运动,同时点F在线段AC上从点A向C运动,速度都是1个单位/秒,时间是t秒(0t6),连接DE、DF、EF(1)请判断EDF形状,并证明你的结论(2)以A、E、D、F四点组成的四边形面积是否发生变化?若不变,求出这个值;若变化,用含t的式子表示2、如图,在ABC中,ABAC,D是BC的中点,E,F分别是AB,AC上的点,且AEAF.求证:DEDF.3、如图,ABC中,B2C,AE平分BAC(1)若ADBC于D,C
6、35,求DAE的大小;(2)若EFAE交AC于F,求证:C2FEC4、如图,沿AC方向开山修路,为了加快施工进度,要在山的另一边同时施工,工人师傅在AC上取一点B,在小山外取一点D,连接BD,并延长使DFBD,过F点作AB的平行线段MF,连接MD,并延长,在其延长线上取一点E,使DEDM,在E点开工就能使A、C、E成一条直线,请说明其中的道理; 5、如图,已知AC平分BAD,CEAB于E,CFAD于F,且BC=CD(1)求证:BCEDCF;(2)求证:AB+AD=2AE.-参考答案-一、单选题1、C【解析】【分析】过点作于点,作于点,作于点,先根据角平分线的性质可得,再根据三角形的面积公式即可
7、得【详解】解:如图,过点作于点,作于点,作于点,是的三条角平分线,故选:C【考点】本题考查了角平分线的性质,熟练掌握角平分线的性质是解题关键2、D【解析】【分析】利用全等三角形的判定方法进行分析即可【详解】解:在ABC和MBC中,MBCABC(ASA),故选:D【考点】本题考查了全等三角形的应用,熟练掌握三角形全等的判定定理是解题的关键3、C【解析】【分析】证出ABCDEF,由SAS即可得出结论【详解】解:补充BECF,理由如下:ABDE,ABCDEF,若要利用SAS判定,B、D选项不符合要求,若A:AC=DF,构成的是SSA,不能证明三角形全等,A选项不符合要求,C选项:BE=CF,BECF
8、,BCEF,在ABC和DEF中,ABCDEF(SAS),故选:C【考点】此题主要考查全等三角形的判定,解题的关键是熟知“SAS”的判定的特点4、A【解析】【分析】观察图形,AD与CE是对应边,根据对应边去找对应角【详解】观察图形知,AD与CE是对应边B与ACD是对应角又D与E是对应角A与BCE是对应角故选:A【考点】本题考查了全等三角形的性质,正确的识别图形是解题的关键5、C【解析】【分析】性质、大小完全相同的两个图形是全等形,根据定义解答【详解】A、两个长方形的长或宽不一定相等,故不是全等图形;B、由于大小不一定相同,故形状相同的两个三角形不一定全等;C、两个全等图形面积一定相等,故正确;D
9、、所有的等边三角形大小不一定相同,故不一定是全等三角形;故选:C【考点】此题考查全等图形的概念及性质,熟记概念是解题的关键6、D【解析】【分析】根据题意作图,可得出OP为AOB的角平分线,有,以OP为边作POC15,则BOC的度数有两种情况,依据所作图形即可得解.【详解】解:(1)以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在AOB内交于点P,则OP为AOB的平分线,(2)两弧在AOB内交于点P,以OP为边作POC15,则BOC15或45,故选:D【考点】本题考查的知识点是根据题意作图并求解,依据题意作出正确的图形是解题的关键.
10、7、C【解析】【分析】过点O作OEAB于E,OFAC于F,连接OA,根据角平分线的性质得:OEOFOD然后根据ABC的面积是12,周长是8,即可得出点O到边BC的距离【详解】如图,过点O作OEAB于E,OFAC于F,连接OA. 点O是ABC,ACB平分线的交点,OEOD,OFOD,即OEOFOD SABCSABOSBCOSACOABOEBCODACOFOD(ABBCAC)OD812OD=3故选:C【考点】此题主要考查了角平分线的性质以及三角形面积求法,角的平分线上的点到角的两边的距离相等,正确表示出三角形面积是解题关键8、C【解析】【分析】过作的平行线交于,通过证明,得,再由是等边三角形,即可
11、得出【详解】解:过作的平行线交于,是等边三角形,是等边三角形,CQPA,在中和中,于,是等边三角形,故选:C【考点】本题主要考查了等边三角形的判定与性质,全等三角形的判定与性质,作辅助线构造全等三角形是解题的关键9、C【解析】【分析】证明RtBCDRtBED(HL),由全等三角形的性质得出CD=DE,则可得出答案【详解】解:,在和中,cm,cm故选:C【考点】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键10、C【解析】【分析】根据三角形的周长可得AC长,然后再利用全等三角形的性质可得DF长【详解】ABC的周长为20,AB5,BC8,AC20587,ABCDEF,D
12、FAC7,故选C【考点】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应边相等二、填空题1、BC【解析】【分析】根据全等三角形的判定方法解答即可【详解】解:BEDC,AA,根据AAS,可以添加BC,使得ABEACD,故答案为:BC【考点】本题考查全等三角形的判定,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型2、8 cm【解析】【分析】先求,推导出,再求出,根据ASA证明,即可得出答案【详解】,在BFD和ACD中,(ASA),cm故答案为:8cm【考点】本题考查了全等三角形的性质和判定,全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等3、100
13、或100度【解析】【分析】延长AD到M,使得DMAD,连接BM,证BDMCDA(SAS),得得到BMACBF,MDAC24,CDBM,再证BFM是等腰三角形,求出MBF的度数,即可解决问题【详解】解:如图,延长AD到M,使得DMAD,连接BM, 在BDM和CDA中, ,BDMCDA(SAS),BMACBF,MDAC24,CDBM,BFAC,BFBM,MBFM24,MBF180MBFM132,EBC32,DBMMBFEBC100,CDBM100,故答案为:100【考点】本题考查全等三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常
14、考题型4、4【解析】【分析】过P点作PEOB于E,根据角平分线的性质定理可得PE=PD,即可求解【详解】解:如图,过P点作PEOB于E,PEOB,PE=PD=4,即P到OB的距离是4,故答案为:4【考点】本题考查了角平分线的性质,熟练掌握角平分线的性质定理是解题的关键5、7【解析】【详解】由MNPQ,ABPQ,可知DAE=EBC=90,可判定ADEBCE,从而得出AE=BC,则AB=AE+BE=AD+BC=7故答案为:7.点睛:本题考查了直角三角形全等的判定和性质以及平行线的性质,是基础知识,比较简单三、解答题1、(1)EDF为等腰直角三角形,证明见解析;(2)四边形AEDF面积不变,9【解析
15、】【分析】(1)连接AD,利用等腰直角三角形的性质根据SAS证明BDEADF,即可得到结论;(2)根据(1)得到SBDE=SADF,推出S四边形AEDF=SADF+SADE=SABD=SABC,根据公式计算即可得到答案.【详解】解:(1)EDF为等腰直角三角形,理由如下:连接AD,AB=AC,BAC=90,点D是BC中点,AD=BD=CD=BC,AD平分BAC,B=C=BAD=CAD=45,点E、F速度都是1个单位秒,时间是t秒,BE=AF,又B=DAF=45,AD=BD,BDEADF(SAS),DE=DF,BDE=ADFBDE+ADE=90,ADF+ADE=90,EDF=90,EDF为等腰直
16、角三角形;(2)四边形AEDF面积不变,理由:由(1)可知,BDEADF,SBDE=SADF,S四边形AEDF=SADF+SADE=SABD=SABC,S四边形AEDF=ACAB=9.【考点】此题考查等腰直角三角形的性质,等腰三角形三线合一的性质,全等三角形的判定及性质.2、见解析【解析】【分析】首先连接AD,由AB=AC,D是BC的中点,根据三线合一的性质,可得EADFAD ,又由SAS,可判定AEDAFD ,继而证得DEDF 【详解】如图,连结ADABAC,D是BC的中点,EADFAD在AED和AFD中,AE=AF,EADFAD,AD=AD,AEDAFD(SAS),DEDF【考点】本题考查
17、了等腰三角形的性质及全等三角形的判定与性质;利用等腰三角形三线合一的性质是解答本题的关键3、 (1)17.5;(2)证明过程见解析【解析】【分析】(1)首先计算出B,BAC的度数,根据AE是BAC的角平分线可得EAC=37.5,再根据RtADC中直角三角形两锐角互余可得DAC的度数,进而可得答案;(2)过A作ADBC于D,证明DAE=FEC,由三角形内角和定理得到EAC=90-C,进而可得DAE=DAC-EAC,利用等量代换可得DAE=C即可求解【详解】解:(1) 解:C=35,B=2C,B=70,在ABC中,由内角和定理可知:BAC=180-B-C=180-70-35=75,AE平分BAC,
18、EAC=37.5,ADBC,ADC=90,在RtADC中,两锐角互余,DAC=90-35=55,DAE=55-37.5=17.5,故答案为:17.5;(2)过A点作ADBC于D点,如下图所示:EFAE,AEF=90,AED+FEC=90,DAE+AED=90,DAE=FEC,AE平分BAC,EAC=BAC=(180-B-C)=(180-3C)=90-C,DAE=DAC-EAC,DAE=DAC-(90-C)=(90-C)-(90-C)=C,FEC=C,C=2FEC【考点】此题主要考查了三角形内角和定理,角平分线的定义,直角三角形中两锐角互余等知识点,熟练掌握各图形的性质是解决本题的关键4、详见解
19、析.【解析】【详解】试题分析:首先根据题意得出BDE和FDM全等,从而得出BEMDMF,即BEMF,最后根据过直线外一点有且只有一条直线与已知直线平行得出答案试题解析:BDDF,DEDM,BDEFDM, BDEFDM,BEMDMF, BEMF,ABMF,根据过直线外一点有且只有一条直线与已知直线平行,A、C、E在一条直线上5、详见解析【解析】【分析】(1)由角平分线定义可证BCEDCF(HL);(2)先证RtFACRtEAC,得AF=AE,由(1)可得AB+AD=(AE+BE)+(AFDF)=AE+BE+AEDF=2AE.【详解】(1)证明:AC是角平分线,CEAB于E,CFAD于F,CE=CF,F=CEB=90,在RtBCE和RtDCF中,BCEDCF;(2)解:CEAB于E,CFAD于F,F=CEA=90,在RtFAC和RtEAC中,RtFACRtEAC,AF=AE,BCEDCF,BE=DF,AB+AD=(AE+BE)+(AFDF)=AE+BE+AEDF=2AE.【考点】本题考查了全等三角形的判定、性质和角平分线定义,注意:全等三角形的对应角相等,对应边相等,直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL
Copyright@ 2020-2024 m.ketangku.com网站版权所有