ImageVerifierCode 换一换
格式:DOCX , 页数:28 ,大小:628.86KB ,
资源ID:958662      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-958662-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(基础强化人教版八年级数学上册第十二章全等三角形同步训练练习题(含答案详解).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

基础强化人教版八年级数学上册第十二章全等三角形同步训练练习题(含答案详解).docx

1、八年级数学上册第十二章全等三角形同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知,则为()A锐角三角形B钝角三角形C直角三角形D以上都有可能2、下列选项中表示两个全等图形的是()A形状相同的两

2、个图形B能够完全重合的两个图形C面积相等的两个图形D周长相等的两个图形3、如图:,则此题可利用下列哪种方法来判定()AASABAASCHLD缺少条件,不可判定4、中,厘米,厘米,点D为AB的中点如果点P在线段BC上以v厘米秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动若点Q的运动速度为3厘米秒,则当与全等时,v的值为AB3C或3D1或55、下列关于全等三角形的说法不正确的是A全等三角形的大小相等B两个等边三角形一定是全等三角形C全等三角形的形状相同D全等三角形的对应边相等6、如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与PRQ的顶点R重合,调

3、整AB和AD,使它们分别落在角的两边上,过点A、C画一条射线AE,AE就是PRQ的平分线此角平分仪的画图原理是()ASSSBSASCASADAAS7、如图,ABC与DEF是全等三角形,则图中的相等线段有()A1B2C3D48、如图,已知,则的长为()A7B3.5C3D29、如图,在中,是边上的高,平分,交于点,若,则的面积等于()A36B48C60D7210、如图为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得ABC65,ACB35,然后在M处立了标杆,使MBC65,MCB35,得到MBCABC,所以测得MB的长就是A,B两点间的距离,这里判定MBCABC的理由是()ASA

4、SBAAACSSSDASA第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,的三边 的长分别为,其三条角平分线交于点,则=_2、如图,ACB90,ACBC,BECE,ADCE,垂足分别为E,D,AD25,DE17,则BE_3、如图,点B,E,C,F在一条直线上,ABDF,ABDF,若ABCDFE,则需添加的条件是_(填一个即可)4、ABC中,BAC:ACB:ABC=4:3:2,且ABCDEF,则DEF=_度5、如图,的度数为_三、解答题(5小题,每小题10分,共计50分)1、如图,ABC中,B2C,AE平分BAC(1)若ADBC于D,C35,求DAE的大小;(2)若

5、EFAE交AC于F,求证:C2FEC2、如图,在中,分别过点B,C向过点A的直线作垂线,垂足分别为点E,F (1)如图,过点A的直线与斜边BC不相交时,求证:;(2)如图,其他条件不变,过点A的直线与斜边BC相交时,若,试求EF的长3、(1)如图,和都是等边三角形,且点,在一条直线上,连结和,直线,相交于点则线段与的数量关系为_与相交构成的锐角的度数为_(2)如图,点,不在同一条直线上,其它条件不变,上述的结论是否还成立(3)应用:如图,点,不在同一条直线上,其它条件依然不变,此时恰好有设直线交于点,请把图形补全若,则_4、如图,在四边形中,分别是,上的点,连接,(1)如图,求证:;(2)如图

6、,当周长最小时,求的度数;(3)如图,若四边形为正方形,点、分别在边、上,且,若,请求出线段的长度5、已知:如图,在AOB和COD中,OA=OB,OC=OD,AOB=COD=50(1)求证:AC=BD;(2)求APB的度数-参考答案-一、单选题1、C【解析】【分析】根据A和B的度数可得与互余,从而得出为直角三角形【详解】解:,即与互余,则为直角三角形,故选C【考点】此题考查的是直角三角形的判定,掌握有两个内角互余的三角形是直角三角形是解决此题的关键2、B【解析】【分析】利用全等图形的定义分析即可【详解】A、形状相同的两个图形,不一定是全等图形,故此选项错误;B、能够完全重合的两个图形,一定是全

7、等图形,故此选项正确;C、面积相等的两个图形,不一定是全等图形,故此选项错误;D、周长相等的两个图形,不一定是全等图形,故此选项错误;故选B【考点】此题主要考查了全等图形,正确把握全等图形的定义是解题关键3、C【解析】【分析】根据全等三角形的判定定理直接求解【详解】解:在RtABC和RtDCB中, (HL),故选C【考点】本题考查了全等三角形的判定定理,牢记全等三角形的判定定理是解题的关键4、C【解析】【分析】此题要分两种情况:当BD=PC时,计算出BP的长,进而可得运动时间,然后再求v;当BD=CQ时,计算出BP的长,进而可得运动时间,然后再求v【详解】当BD=PC时,点D为AB的中点,BD

8、=AB=6厘米,BD=PC,BP=9-6=3(厘米),CQ =BP=3厘米,点Q运动了33=1秒点P在线段BC上的运动速度是31=3(厘米秒),当BD=CQ时,BD=CQ=6厘米,点Q运动了63=2秒.BDPCQP,BP=CP=厘米,点P在线段BC上的运动速度是2=2.25(厘米秒),故选C.【考点】此题主要考查了全等三角形的性质,全等三角形的对应边相等,对应角相等,关键是要分情况讨论,不要漏解5、B【解析】【分析】根据全等三角形的定义与性质即可求解【详解】A、全等三角形的大小相等,说法正确,故A选项错误;B、两个等边三角形,三个角对应相等,但边长不一定相等,所以不一定是全等三角形,故B选项正

9、确;C、全等三角形的形状相同,说法正确,故C选项错误;D、全等三角形的对应边相等,说法正确,故D选项错误故选B【考点】本题考查了全等三角形的定义与性质,能够完全重合的两个三角形叫做全等三角形,即形状相同、大小相等两个三角形叫做全等三角形;全等三角形的对应边相等,对应角相等6、A【解析】【分析】根据题意两个三角形的三条边分别对应相等,即可利用“边边边”证明这两个三角形全等,即可选择【详解】在和中, ,即此角平分仪的画图原理是SSS故选:A【考点】本题考查了三角形全等的判定和性质根据题意找到可证明两三角形全等的条件是解答本题的关键7、D【解析】【分析】全等三角形的对应边相等,据此可得出AB=DE,

10、AC=DF,BC=EF;再根据BC-EC=EF-EC,可得出一组线段相等,据此找出组数,问题可解.【详解】ABCDEF,AB=DE,AC=DF,BC=EF,BC-EC=EF-EC,即BE=CF.故共有四组相等线段.故选D.【考点】本题主要考查全等三角形的性质,全等三角形的对应边相等.8、C【解析】【分析】利用全等三角形的性质求解即可【详解】解:ABCDAE,AC=DE=5,AE=BC=2,CE=AC-AE=3,故选C【考点】本题主要考查了全等三角形的性质,熟知全等三角形对应边相等是解题的关键9、B【解析】【分析】作交于点,然后根据角平分线的性质,可以得到,再根据三角形的面积公式,即可求得的面积

11、【详解】解:作交于点,是边上的高,平分,故选:B【考点】本题考查了三角形的面积和角平分线性质理解和掌握角的平分线的性质定理是解题的关键10、D【解析】【分析】利用全等三角形的判定方法进行分析即可【详解】解:在ABC和MBC中,MBCABC(ASA),故选:D【考点】本题考查了全等三角形的应用,熟练掌握三角形全等的判定定理是解题的关键二、填空题1、【解析】【分析】首先过点O作ODAB于点D,作OEAC于点E,作OFBC于点F,由OA,OB,OC是ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由ABC的三边AB、BC、CA长分别为40、50、60,即可求得SABO:SBCO:S

12、CAO的值【详解】解:过点O作ODAB于点D,作OEAC于点E,作OFBC于点F,OA,OB,OC是ABC的三条角平分线,OD=OE=OF,ABC的三边AB、BC、CA长分别为40、50、60,SABO:SBCO:SCAO=(ABOD):(BCOF):(ACOE)=AB:BC:AC=40:50:60=故答案为:【考点】此题考查了角平分线的性质此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用2、8【解析】【分析】可先证明BCECAD,可求得CEAD,结合条件可求得CD,则可求得BE【详解】解:ACB90,BCE+ACD90,又BECE,ADCE,EADC90,BCE+CBE90,CBE

13、ACD,在CBE和ACD中, ,CBEACD(AAS),BECD,CEAD25,DE17,CDCEDEADDE25178,BECD8;故答案为:8【考点】本题主要考查全等三角形的判定和性质;证明三角形全等得出对应边相等是解决问题的关键3、AD 或ACBDEF或ACDE或BCFE或BEFC【解析】【分析】先根据已知条件推得BF,加上ABDF,要证ABCDFE,只需要根据全等三角形的判定方法添加适当的角和边即可【详解】解:ABDF,添加AD,在和中 ,;添加ACBDEF,在和中 ,;添加ACDE,ACDE,ACBDEF,在和中 ,;添加BCFE,在和中 ,;添加BEFC,BEFC,在和中 ,综上可

14、得,添加AD 或ACBDEF或ACDE或BCFE或BEFC都可得到ABCDFE故答案为:AD 或ACBDEF或ACDE或BCFE或BEFC【考点】本题考查三角形全等的判定方法,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角4、40【解析】【分析】设BAC为4x,则ACB为3x,ABC为2x,由BAC+ACB+ABC=180得4x+3x+2x=180.【详解】解:设BAC为4x,则ACB为3x,ABC为2xBAC+ACB+ABC=1804x+3x+2x=180,解得x=20ABC=2x=40ABCDEFDEF=ABC=40故答案为40【考点】考核知识点:全等三角

15、形性质.理解全等三角形性质是关键.5、【解析】【分析】根据全等三角形的性质求出EADCAB,求出DABEAC=50,即可得到BAC的度数【详解】解:ABCADE,EADCAB,EADCADCABCAD,EACDAB,EAB125,CAD25,DABEAC=(12525)50,BAC50+2575故答案为:75【考点】本题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解题的关键三、解答题1、 (1)17.5;(2)证明过程见解析【解析】【分析】(1)首先计算出B,BAC的度数,根据AE是BAC的角平分线可得EAC=37.5,再根据RtADC中直角三角形两锐角互余可得DAC的度数,进而可得

16、答案;(2)过A作ADBC于D,证明DAE=FEC,由三角形内角和定理得到EAC=90-C,进而可得DAE=DAC-EAC,利用等量代换可得DAE=C即可求解【详解】解:(1) 解:C=35,B=2C,B=70,在ABC中,由内角和定理可知:BAC=180-B-C=180-70-35=75,AE平分BAC,EAC=37.5,ADBC,ADC=90,在RtADC中,两锐角互余,DAC=90-35=55,DAE=55-37.5=17.5,故答案为:17.5;(2)过A点作ADBC于D点,如下图所示:EFAE,AEF=90,AED+FEC=90,DAE+AED=90,DAE=FEC,AE平分BAC,

17、EAC=BAC=(180-B-C)=(180-3C)=90-C,DAE=DAC-EAC,DAE=DAC-(90-C)=(90-C)-(90-C)=C,FEC=C,C=2FEC【考点】此题主要考查了三角形内角和定理,角平分线的定义,直角三角形中两锐角互余等知识点,熟练掌握各图形的性质是解决本题的关键2、(1)见详解;见详解;(2)7【解析】【分析】(1)由条件可求得EBAFAC,利用AAS可证明ABECAF;利用全等三角形的性质可得EAFC,EBFA,利用线段的和差可证得结论;(2)同(1)可证明ABECAF,可证得EFFAEA,代入可求得EF的长【详解】(1)证明:BEEF,CFEF,AEBC

18、FA90,EABEBA90,BAC90,EABFAC90,EBAFAC,在AEB与CFA中,ABECAF(AAS),ABECAF,EAFC,EBFA,EFAFAEBECF;(2)解:BEAF,CFAFAEBCFA90EABEBA90BAC90EABFAC90EBAFAC,在AEB与CFA中,ABECAF(AAS),EAFC,EBFA,EFFAEAEBFC1037【考点】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键3、(1)相等,;(2)成立,证明见解析;(3)见解析,

19、4.【解析】【分析】(1)证明BCDACE,并运用三角形外角和定理和等边三角形的性质求解即可;(2)是第(1)问的变式,只是位置变化,结论保持不变;(3)根据AEC=30,判定AE是等边三角形CDE的高,运用前面的结论,把条件集中到一个含有30角的直角三角形中求解即可.【详解】(1)相等;.理由如下:和都是等边三角形,在和中,又,.(2)成立;理由如下:证明:和都是等边三角形,在和中,又,.(3)补全图形(如图),CDE是等边三角形,DEC=60,AEC=30,AEC=AED,EQDQ,DQP=90,根据(1)知,BDC=AEC=30,PQ=2,DP=4.故答案为:4.【考点】本题是一道猜想证

20、明题,以两线段之间的大小关系为基础,考查了等边三角形的性质,三角形的全等,直角三角形的性质,证明两个手拉手模型三角形全等是解题的关键.4、(1)见解析;(2);(3)【解析】【分析】(1)延长到点G,使,连接,首先证明,则有,然后利用角度之间的关系得出,进而可证明,则,则结论可证;(2)分别作点A关于和的对称点,连接,交于点,交于点,根据轴对称的性质有,当点、在同一条直线上时,即为周长的最小值,然后利用求解即可;(3)旋转至的位置,首先证明,则有,最后利用求解即可【详解】(1)证明:如解图,延长到点,使,连接,在和中,在和中,;(2)解:如解图,分别作点A关于和的对称点,连接,交于点,交于点由对称的性质可得,此时的周长为当点、在同一条直线上时,即为周长的最小值,;(3)解:如解图,旋转至的位置,在和中,【考点】本题主要考查全等三角形的判定及性质,轴对称的性质,掌握全等三角形的判定及性质是解题的关键5、 (1)见解析;(2)【解析】【分析】(1)通过证明,即可求证;(2)利用三角形外角的性质可得,由(1)可得,从而得到,利用三角形内角和的性质即可求解(1)证明:,又OA=OB,OC=OD,;(2)解:由(1)可得,由三角形外角的性质可得,【考点】此题考查了全等三角形的判定与性质,三角形内角的性质以及三角形外角的性质,解题的关键是熟练掌握相关基本性质

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1