1、八年级数学上册第十二章全等三角形同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在正方形网格中,AOB的位置如图所示,到AOB两边距离相等的点应是()A点MB点NC点PD点Q2、如图,在中,观察图
2、中尺规作图的痕迹,可知的度数为()ABCD3、如图,在和中,点,在同一直线上,只添加一个条件,能判定的是()ABCD4、如图,RtACB中,ACB90,ABC的角平分线AD、BE相交于点P,过P作PFAD交BC的延长线于点F,交AC于点H,则下列结论:APB135;BFBA;PHPD;连接CP,CP平分ACB,其中正确的是()ABCD5、如图,已知图中的两个三角形全等,则的度数是()A72B60C58D506、如图,已知能直接判断的方法是()ABCD7、如图,B,C,E,F四点在一条直线上,下列条件能判定ABC与DEF全等的是()AABDE,A=D,BE=CFBABDE,AB=DE,AC=DF
3、CABDE,AC=DF,BE=CFDABDE,ACDF,A=D8、如图是用直尺和圆规作一个角等于已知角的示意图,说明的依据是()ABCD9、如图,把沿线段折叠,使点落在点处;若,则的度数为()ABCD10、如图,已知ABCDCB添加一个条件后,可得ABCDCB,则在下列条件中,不能添加的是()AACDBBABDCCADDABDDCA第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图, 在ABC中, ACB的平分线交AB于点D,DEAC于点E, F为BC上一点,若DF=AD, ACD与CDF的面积分别为10和4, 则AED的面积为_2、如图,在中,、的平分线相交于点I,
4、且,若,则的度数为_度3、如图,在ABC中,ACB90,ACBC,BECE,ADCE于D,AD2,BE1则DE_4、在ABC中,C=90,AD是ABC的角平分线,BC=6、AC=8、AB=10,则点D到AB的距离为_5、如图,MNPQ,ABPQ,点A,D,B,C分别在直线MN和PQ上,点E在AB上,ADBC7,ADEB,DEEC,则AB_三、解答题(5小题,每小题10分,共计50分)1、如图,在中,且,点是斜边的中点,E、F分别是AB、AC边上的点,且连接(1)求证:;(2)如图,若,则的面积为_2、如图,在中,点在边上,使,过点作,分别交于点,交的延长线于点求证:3、如图,在ABC中,AD平
5、分BAC,C=90,DEAB于点E,点F在AC上,BD=DF(1)求证:CF=EB;(2)若AB=14,AF=8,求CF的长4、如图,在四边形中,分别是,上的点,连接,(1)如图,求证:;(2)如图,当周长最小时,求的度数;(3)如图,若四边形为正方形,点、分别在边、上,且,若,请求出线段的长度5、如图,在ABC中,ABAC ,ABAC,DE是过点A的直线,BDDE于D,CEDE于点E;(1)若B、C在DE的同侧(如图1所示)求证:DEBDCE;(2)若B、C在DE的两侧(如图2所示),其他条件不变,则DE,BD,CE具有怎样的等量关系?写出等量关系,不需证明-参考答案-一、单选题1、A【解析
6、】【分析】利用到角的两边的距离相等的点在角的平分线上进行判断【详解】点P、Q、M、N中在AOB的平分线上的是M点故选:A【考点】本题主要考查了角平分线的性质,根据正方形网格看出AOB平分线上的点是解答问题的关键2、C【解析】【分析】利用等腰三角形的性质和基本作图得到,则平分,利用和三角形内角和计算出,从而得到的度数.【详解】由作法得,平分,故选C【考点】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了等腰三角形的性质.3、B【解析】【分析】根据三角形全等的判定做出选择即可【详解
7、】A、,不能判断,选项不符合题意;B、,利用SAS定理可以判断,选项符合题意;C、,不能判断,选项不符合题意;D、,不能判断,选项不符合题意;故选:B【考点】本题考查三角形全等的判定,根据SSS、SAS、ASA、AAS判断三角形全等,找出三角形全等的条件是解答本题的关键4、D【解析】【分析】根据三角形内角和定理以及角平分线定义判断;根据全等三角形的判定和性质判断;根据角平分线的判定与性质判断【详解】解:在ABC中,ACB=90,BAC+ABC=90,又AD、BE分别平分BAC、ABC,BAD+ABE=(BAC+ABC)=(180-ACB)=(180-90)=45,APB=135,故正确BPD=
8、45,又PFAD,FPB=90+45=135,APB=FPB,又ABP=FBP,BP=BP,ABPFBP(ASA),BAP=BFP,AB=FB,PA=PF,故正确在APH和FPD中,APH=FPD=90,PAH=BAP=BFP,PA=PF,APHFPD(ASA),PH=PD,故正确连接CP,如下图所示:ABC的角平分线AD、BE相交于点P,点P到AB、AC的距离相等,点P到AB、BC的距离相等,点P到BC、AC的距离相等,点P在ACB的平分线上,CP平分ACB,故正确,综上所述,均正确,故选:D【考点】本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理掌握相关性质是解题的关
9、键5、D【解析】【分析】根据是a、c边的夹角,50的角是a、c边的夹角,然后根据两个三角形全等写出即可【详解】解:是a、c边的夹角,50的角是a、c边的夹角,又两个三角形全等,的度数是50故选:D【考点】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解答本题的关键全等三角形的对应角相等,对应边相等对应边的对角是对应角,对应角的对边是对应边6、A【解析】【分析】根据三角形全等的判定定理解答.【详解】在ABC和DCB中,,(SAS),故选:A.【考点】此题考查全等三角形的判定定理:SSS、SAS、ASA、AAS、HL,根据已知条件找到全等所需的对应相等的边或角是解题的关键.7、A【解析】【
10、分析】根据全等三角形的判定条件逐一判断即可【详解】解:A、,即在和中,故A符合题意;B、,再由,不可以利用SSA证明两个三角形全等,故B不符合题意;C、,再由,不可以利用SSA证明两个三角形全等,故C不符合题意;D、,再由,不可以利用AAA证明两个三角形全等,故D不符合题意;故选A【考点】本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键8、B【解析】【分析】由作法易得OD=OD,OC=OC,CD=CD,依据SSS可判定CODCOD【详解】解:由作法易得OD=OD,OC=OC,CD=CD,依据SSS可判定CODCOD,故选B【考点】本题主要考查了尺规作图作已知角相等的角,解题
11、的关键在于能够熟练掌握全等三角形的判定条件9、C【解析】【分析】由于折叠,可得三角形全等,运用三角形全等得出,利用平行线的性质可得出则即可求【详解】解:沿线段折叠,使点落在点处, , , , , ,故选:C【考点】本题考查了全等三角形的性质及三角形内角和定理、平行线的性质;解题的关键是,理解折叠就是得到全等的三角形,根据全等三角形的对应角相等就可以解决10、A【解析】【分析】先要确定现有已知在图形上的位置,结合全等三角形的判定方法对选项逐一验证,排除错误的选项【详解】解:ABCDCB,BCBC,A、添加ACDB,不能得ABCDCB,符合题意;B、添加ABDC,利用SAS可得ABCDCB,不符合
12、题意;C、添加AD,利用AAS可得ABCDCB,不符合题意;D、添加ABDDCA,ACBDBC,利用ASA可得ABCDCB,不符合题意;故选:A【考点】本题主要考查三角形全等的判定,熟练掌握判定方法是解题的关键二、填空题1、3【解析】【分析】如图(见解析),过点D作,根据角平分线的性质可得,再利用三角形全等的判定定理得出,从而有,最后根据三角形面积的和差即可得出答案【详解】如图,过点D作平分,又则解得故答案为:3【考点】本题考查了角平分线的性质、直角三角形全等的判定定理等知识点,通过作辅助线,构造两个全等的三角形是解题关键2、70【解析】【分析】在BC上取点D,令,利用SAS定理证明得到,再利
13、用得到,所以,再由角平分线可得,利用以及AI平分可知【详解】解:在BC上取点D,令,连接DI,BI,如下图所示:CI平分在和中,即:AI平分、CI平分,BI平分,故答案为:70【考点】本题考查角平分线,全等三角形的判定及性质,三角形的一个外角等于与它不相邻的两个内角的和,利用,在BC上取点D等于AC,作出辅助线是解本题的关键点,也是难点3、1【解析】【分析】先证明ACDCBE,再求出DE的长,解决问题【详解】解:BECE于E,ADCE于D,故答案为:1【考点】此题考查三角形全等的判定和性质,掌握再全等三角形的判定和性质是解题的关键4、或【解析】【分析】作DEAB于E,如图,先根据勾股定理计算出
14、BC=8,再利用角平分线的性质得到DE=DC,设DE=DC=x,利用面积法得到10x=6(8-x),然后解方程即可【详解】解:作DEAB于E,如图,AD是ABC的一条角平分线,DCAC,DEAB,DE=DC,设DE=DC=x,SABD=DEAB=ACBD,即10x=8(6-x),解得x=,即点D到AB边的距离为故答案为:【考点】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等,由已知能够注意到D到AB的距离即为DE长是解决的关键5、7【解析】【详解】由MNPQ,ABPQ,可知DAE=EBC=90,可判定ADEBCE,从而得出AE=BC,则AB=AE+BE=AD+BC=7故答案为:
15、7.点睛:本题考查了直角三角形全等的判定和性质以及平行线的性质,是基础知识,比较简单三、解答题1、(1)见解析;(2)【解析】【分析】(1)易证ADE=CDF,即可证明ADECDF;(2)由(1)可得AE=CF,BE=AF,再根据DEF的面积=,即可解题【详解】(1)证明:AB=AC,D是BC中点,BAD=C=45,AD=BD=CD,ADE+ADF=90,ADF+CDF=90,ADE=CDF,在ADE和CDF中,ADECDF(ASA)(2)解:ADECDFAE=CF=5,BE=AF=12,AB=AC=17,DEF的面积=【考点】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题
16、中求证ADECDF是解题的关键2、详见解析【解析】【分析】根据得出,再根据,故,证明即可证明.【详解】,在和中,(AAS),【考点】本题考查了直角三角形两锐角互余以及三角形全等的判定和性质,熟练掌握直角三角形两锐角互余以及三角形全等的判定和性质是解题的关键.3、 (1)见详解(2)3【解析】【分析】(1)利用角平分线的性质可得,再利用“HL”证明,再利用全等三角形的性质求解;(2)利用“HL“证明,可得,设,则 ,即可建立方程求解(1)证明:于点E,又AD平分, ,在和中, ,;(2)解:在和中, ,设,则,解得 ,故【考点】本题考查了直角三角形全等的判定与性质,角平分线的性质,在图形中找到正
17、确的全等三角形以及熟悉直角三角形全等的性质与判定是关键4、(1)见解析;(2);(3)【解析】【分析】(1)延长到点G,使,连接,首先证明,则有,然后利用角度之间的关系得出,进而可证明,则,则结论可证;(2)分别作点A关于和的对称点,连接,交于点,交于点,根据轴对称的性质有,当点、在同一条直线上时,即为周长的最小值,然后利用求解即可;(3)旋转至的位置,首先证明,则有,最后利用求解即可【详解】(1)证明:如解图,延长到点,使,连接,在和中,在和中,;(2)解:如解图,分别作点A关于和的对称点,连接,交于点,交于点由对称的性质可得,此时的周长为当点、在同一条直线上时,即为周长的最小值,;(3)解
18、:如解图,旋转至的位置,在和中,【考点】本题主要考查全等三角形的判定及性质,轴对称的性质,掌握全等三角形的判定及性质是解题的关键5、 (1)见解析(2)DE=CE-BD【解析】【分析】(1)根据AAS证明ADBCEA,可以得出BD=AE,AD=CE,由DE=AD+AE就可以得出结论;(2)由条件可以得出ADB=CEA=90,BAD=ACE,再由AB=AC就可以得出ADBCEA,就可以得出BD=AE,AD=CE,由DE=AD+AE就可以得出DE=CE-BD(1)ABAC , BDDE, CEDEBAC=90,ADB=AEC=90ACE+CAE=90,BAD+CAE=90,BAD=ACE,在ADC与BEC中,ADBAEC90, BADACE, AB=AC,ADBCEA(AAS),AD=CE,BD=AE,DE=AD+AE,DE=BD+CE;(2)DE=CE-BD理由:BDAD,CEAD,ADB=CEA=90ABAC , BAD+CAE=90CAE+ACE=90,BAD=ACE在ADB和CEA中,ADBCEA(AAS),BD=AE,AD=CEAD=AE+ED,DE=AD-AE=CE-BD【考点】本题考查了等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是解答本题的关键