1、八年级数学上册第十二章全等三角形专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知AOB60,以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径
2、作弧,两弧在AOB内交于点P,以OP为边作POC15,则BOC的度数为()A15B45C15或30D15或452、如图,已知,则图中全等三角形的总对数是A3B4C5D63、如图,ABC与DEF是全等三角形,则图中的相等线段有()A1B2C3D44、如图,在ABC和BDE中,点C在边BD上,边AC交边BE于点F若ACBD,ABED,BCBE,则ACB等于()AEDBBBEDCAFBD2ABF5、作的平分线时,以O为圆心,某一长度为半径作弧,与OA,OB分别相交于C,D,然后分别以C,D为圆心,适当的长度为半径作弧使两弧在的内部相交于一点,则这个适当的长度()A大于B等于C小于D以上都不对6、如图
3、,已知,是上的两个点,若,则的长为()ABCD7、如图,AD是的角平分线,垂足为F,和的面积分别为60和35,则的面积为A25BCD8、如图,已知,用尺规作它的角平分线如图,步骤如下:第一步:以B为圆心,以a为半径画弧,分别交射线,于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在内部交于点P;第三步;画射线,射线即为所求下列叙述不正确的是()AB作图的原理是构造三角形全等C由第二步可知,D的长9、如图,已知在四边形中,平分,则四边形的面积是()A24B30C36D4210、如图是作的作图痕迹,则此作图的已知条件是()A已知两边及夹角B已知三边C已知两角及夹边D已知两边及一边对角第
4、卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在x、y轴上分别截取OA、OB,使OAOB,再分别以点A、B为圆心,以大于AB的长度为半径画弧,两弧交于点C若C的坐标为(3a,a8),则a_2、如图,在ABC中,ADBC于点D,过A作AEBC,且AEAB,AB上有一点F,连接EF若EFAC,CD4BD,则_3、已知AOB60,OC是AOB的平分线,点D为OC上一点,过D作直线DEOA,垂足为点E,且直线DE交OB于点F,如图所示若DE2,则DF_4、如图,在和中,直线交于点M,连接以下结论:;平分其中正确的是_(填序号)5、ABC中,BAC:ACB:ABC=4:3:
5、2,且ABCDEF,则DEF=_度三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC中,ABC、ACB的平分线交于点D,延长BD交AC于E,G、F分别在BD、BC上,连接DF、GF,其中A2BDF,GDDE(1)当A80时,求EDC的度数;(2)求证:CFFGCE2、如图,已知,垂足分别为A,D,求证:123、如图,在五边形ABCDE中,AB=CD,ABC=BCD,BE,CE分别是ABC,BCD的角平分线(1)求证:ABEDCE;(2)当A=80,ABC=140,时,AED=_度(直接填空)4、方格纸上有2个图形,你能沿着格线把每一个图形都分成完全相同的两个部分吗?请画出分割线5
6、、如图,点A,F,E,D在一条直线上,AFDE,CFBE,ABCD求证BECF-参考答案-一、单选题1、D【解析】【分析】根据题意作图,可得出OP为AOB的角平分线,有,以OP为边作POC15,则BOC的度数有两种情况,依据所作图形即可得解.【详解】解:(1)以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在AOB内交于点P,则OP为AOB的平分线,(2)两弧在AOB内交于点P,以OP为边作POC15,则BOC15或45,故选:D【考点】本题考查的知识点是根据题意作图并求解,依据题意作出正确的图形是解题的关键.2、D【解析】【分析】
7、根据全等三角形的判定方法进行判断全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件【详解】解:ABDC,ADBC,DAC=BCA,CDB=ABD,DCA=BAC,ADB=CBD,又BE=DF,由ADB=CBD,DB=BD,ABD=CDB,可得ABDCDB;由DAC=BCA,AC=CA,DCA=BAC,可得ACDCAB;AO=CO,DO=BO,由DAO=BCO,AO=CO,AOD=COB,可得AODCOB;由CDB=ABD,COD=AOB,CO=AO,可得CODAOB;由DCA=BAC,COF=AOE,CO=AO,可得AOECOF;由CDB=ABD,DOF=BOE,DO=BO,可
8、得DOFBOE;故选D【考点】本题主要考查了全等三角形的判定与性质的运用,解题时注意:若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,或者是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边3、D【解析】【分析】全等三角形的对应边相等,据此可得出AB=DE,AC=DF,BC=EF;再根据BC-EC=EF-EC,可得出一组线段相等,据此找出组数,问题可解.【详解】ABCDEF,AB=DE,AC=DF,BC=EF,BC-EC=EF-EC,即BE=CF.故共有四组相等线段.故选D.【考点】本题主要考查全等三角形的性质,全等三角形的对应边相
9、等.4、C【解析】【分析】根据全等三角形的判定与性质可得,再根据三角形外角的性质即可求得答案【详解】解:在和中,是的外角,故选:C【考点】本题考查了全等三角形的判定与性质以及三角形的外角性质,熟练掌握全等三角形的判定与性质是解决本题的关键5、A【解析】【分析】根据作已知角的角平分线的方法即可判断【详解】因为分别以C,D为圆心画弧时,要保证两弧在的内部交于一点,所以半径应大于,故选:A【考点】本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)6、B【解析】【分析】由题意可证可得可求EF的
10、长【详解】解:在和中,故选:B【考点】本题考查了全等三角形的判定和性质,熟练运用全等三角形的判定是本题的关键7、D【解析】【分析】过点D作DHAC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,再利用“HL”证明RtADF和RtADH全等,RtDEF和RtDGH全等,然后根据全等三角形的面积相等列方程求解即可【详解】如图,过点D作于H,是的角平分线,在和中,在和中,和的面积分别为60和35,=12.5,故选D【考点】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记掌握相关性质、正确添加辅助线构造出全等三角形是解题的关键8、D【解析】【分析】根据用尺规作图
11、法画已知角的角平分线的基本步骤判断即可【详解】解:A、以a为半径画弧,故正确B、根据作图步骤可知BD=BE,PD=PE,BP=BP,BDPBEP(SSS),故正确C、分别以D,E为圆心,以b为半径画弧,两弧在内部交于点P,故正确D、分别以D,E为圆心,以b为半径画弧,其中,否则两个圆弧没有交点,故错误故选:D【考点】本题考查用尺规作图法画已知角的角平分线及理论依据,熟练尺规作图的基本步骤是关键9、B【解析】【分析】过D作DEAB交BA的延长线于E,根据角平分线的性质得到DE=CD=4,根据三角形的面积公式即可得到结论【详解】如图,过D作DEAB交BA的延长线于E,BD平分ABC,BCD=90,
12、DE=CD=4,四边形的面积 故选B.【考点】本题考查了角平分线的性质,三角形的面积的计算,正确的作出辅助线是解题的关键10、C【解析】【分析】观察的作图痕迹,可得此作图的条件.【详解】解:观察的作图痕迹,可得此作图的已知条件为:,及线段AB,故已知条件为:两角及夹边,故选C.【考点】本题主要考查三角形作图及三角形全等的相关知识.二、填空题1、2【解析】【分析】根据尺规作图可知,点C在AOB角平分线上,所以C点的横坐标和纵坐标相等,即可以求出a的值【详解】解:根据题目尺规作图可知,交点C是AOB角平分线上的一点,点C在第一象限,点C的横坐标和纵坐标都是正数且横坐标等于纵坐标,即3a=-a+8,
13、得a=2,故答案为:2【考点】本题考查了角平分线尺规作图,角平分线的性质,以及平面直角坐标系的知识,结合直角坐标系的知识列方程求解是解答本题的关键2、【解析】【分析】在CD上取一点G,使GD=BD,连接AG,作EHAB交BA的延长线于点H,先证明AEHGAD,得EH=AD,AH=GD,再证明RtEHFRtADC,得FH=CD,于是得AF=GC,则,得SAEF=SGAC,设GD=BD=m,则CD=4BD=4m,所以CG=4m-m=3m,BC=4m+m=5m,则,得,于是得到问题的答案【详解】解:如图,在CD上取一点G,使GD=BD,连接AG,作EHAB交BA的延长线于点H,ADBC于点D,AG=
14、AB,H=ADG=90AGD=B,AE/BC,EAH=B,EAH=AGD,AE=AB,AE=AG, 在AEH和GAD中,AEHGAD(AAS),EH=AD,AH=GD,在RtEHF和RtADC中,RtEHFRtADC(HL),FH=CD,FH-AH=CD-GD,AF=GC,SAEF=SGAC,设GD=BD=m,则CD=4BD=4m,CG=4m-m=3m,BC=4m+m=5m,故答案为:【考点】此题考查平行线的性质、全等三角形的判定与性质、有关面积比问题的求解等知识与方法,正确地作出所需要的辅助线是解题的关键3、4【解析】【分析】过点D作DMOB,垂足为M,则DM=DE=2,在RtOEF中,利用
15、三角形内角和定理可求出DFM=30,在RtDMF中,由30角所对的直角边等于斜边的一半可求出DF的长,此题得解【详解】过点D作DMOB,垂足为M,如图所示OC是AOB的平分线,DMDE2在RtOEF中,OEF90,EOF60,OFE30,即DFM30在RtDMF中,DMF90,DFM30,DF2DM4故答案为4【考点】本题考查了角平分线的性质、三角形内角和定理以及含30度角的直角三角形,利用角平分线的性质及30角所对的直角边等于斜边的一半,求出DF的长是解题的关键4、【解析】【分析】由SAS证明AOCBOD得出OAC=OBD,AC=BD,正确; 由全等三角形的性质得出OAC=OBD,由三角形的
16、外角性质得:AMB+OBD=OAC+AOB,得出AMB=AOB=,可得正确; 作OGAM于G,OHDM于H,利用全等三角形的对应高相等得出OG=OH,由角平分线的判定方法得AMO=DMO,假设OM平分BOC,则可求出AOM=DOM,由全等三角形的判定定理可得AMODMO,得AO=OD,而OC=OD,所以OA=OC,而OAOC,故错误;即可得出结论【详解】解:AOB=COD=, AOB+BOC=COD+BOC, 即AOC=BOD, 在AOC和BOD中, AOCBOD(SAS), OAC=OBD,AC=BD, 故正确; 由三角形的内角和定理得: AMB+OBD=OAC+AOB, OAC=OBD,
17、AMB=AOB=, ,故正确; 作OGAM于G,OHDM于H,如图所示, AOCBOD, 结合全等三角形的对应高可得:OG=OH, MO平分AMD, AMO=DMO, 假设OM平分BOC,则BOM=COM, AOB=COD, AOB+BOM=COD+COM, 即AOM=DOM, 在AMO与DMO中, , AMODMO(ASA), OA=OD, OC=OD, OA=OC, 而OAOC,故错误; 正确的个数有3个; 故答案为:【考点】本题属于三角形的综合题,是中考填空题的压轴题,本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识,证明三角形全等是解题的关键5、40【解析】【分
18、析】设BAC为4x,则ACB为3x,ABC为2x,由BAC+ACB+ABC=180得4x+3x+2x=180.【详解】解:设BAC为4x,则ACB为3x,ABC为2xBAC+ACB+ABC=1804x+3x+2x=180,解得x=20ABC=2x=40ABCDEFDEF=ABC=40故答案为40【考点】考核知识点:全等三角形性质.理解全等三角形性质是关键.三、解答题1、 (1)(2)证明见解析【解析】【分析】(1)根据三角形内角和与角平分线定义可得,再根据外角性质即可求出;(2)在线段上取一点,使,连接,证明,得到,利用全等三角形的性质与外角性质得出,证明,从而得到,即可证明结论(1)解:在A
19、BC中,A80,ABC、ACB的平分线交于点D,EDC=DBC+DCB;(2)解:在线段上取一点,使,连接,如图所示:平分,在和中,为的一个外角,为的一个外角,平分,A2BDF,在和中,【考点】本题考查三角形综合,涉及到三角形内角和定理的运用、角平分线定义、外角性质求角度、三角形全等的判定与性质等知识点,正确的做辅助线是解决问题的关键2、见解析【解析】【分析】根据HL证明RtABC与RtDCB全等,再利用全等三角形的性质证明即可【详解】证明:,AD=90在RtABC和RtDCB中, RtABCRtDCB(HL)12【考点】此题考查全等三角形的判定和性质,关键是根据HL证明RtABC与RtDCB
20、全等3、 (1)见解析;(2)100【解析】【分析】(1)根据ABC=BCD,BE,CE分别是ABC,BCD的角平分线,可得ABE=DCE,CBE=BCE,推出BE=CE,由此利用SAS证明ABEDCE;(2)根据三角形全等的性质求出D的度数,利用公式求出五边形的内角和,即可得到答案(1)证明:ABC=BCD,BE,CE分别是ABC,BCD的角平分线,ABE=CBE=ABC,BCE=DCE=BCD,ABE=DCE,CBE=BCE,BE=CE,又AB=CD,ABEDCE(SAS);(2)ABEDCE,D=A=80,五边形ABCDE的内角和为,AED=,故答案为:100【考点】此题考查了全等三角形
21、的判定及性质,多边形内角和计算,正确掌握全等三角形的判定及性质定理是解题的关键4、见解析【解析】【分析】观察第一个图,图中共有20个小方格,要分成完全相同两部分,则每个有10个小格,则可按如图所示,沿ABCD分割;第二个图同理沿EFGHPQ分割即可【详解】解:如图所示,第一个图,图中共有20个小方格,要分成完全相同两部分,则每个有10个小格,则可按如图所示,沿ABCD分割;第二个图同理沿EFGHPQ分割即可将分割出的两个图形,逆时针旋转90度,再通过平移,两部分能够完全重合,所以分割出的两部分完全相同【考点】本题考查图形全等,掌握全等图形的定义是解题的关键5、证明见解析【解析】【分析】根据线段的和差关系可得AEDF,根据平行线的性质可得DA,CFDBEA,利用ASA可证明ABEDCF,根据全等三角形的性质即可得结论【详解】AFDE,AFEFDEEF,即AEDF,AB/CD,DA,CF/BE,CFDBEA,在ABEDCF中,ABEDCF,BECF【考点】本题考查平行线的性质及全等三角形的判定与性质,熟练掌握相关性质及判定定理是解题关键