1、八年级数学上册第十二章全等三角形专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在和中,连接交于点,连接下列结论:;平分;平分其中正确的个数为()A4B3C2D12、如图给出了四组三角形,其
2、中全等的三角形有()组 A1B2C3 D43、图中的小正方形边长都相等,若,则点Q可能是图中的()A点DB点CC点BD点A4、下列说法:若,则为的中点若,则是的平分线,则若,则,其中正确的有()A1个B2个C3个D4个5、如图,在和中,点,在同一直线上,只添加一个条件,能判定的是()ABCD6、如图,在ABC中,ACB90,ACBC,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90得到线段CE,连结DE交BC于点F,连接BE当ADBF时,BEF的度数是()A45B60C62.5D67.57、如图,在OAB和OCD中,OA=OB,OC=OD,OAOC,AOB
3、=COD=40,连接AC,BD交于点M,连接OM,下列结论:AOCBOD;AC=BD;AMB=40;MO平分BMC其中正确的个数为()A4B3C2D18、如图,点O是ABC中BCA,ABC的平分线的交点,已知ABC的面积是12,周长是8,则点O到边BC的距离是()A1B2C3D49、如图,在中,D是上一点,于点E,连接,若,则等于()ABCD10、如图,在ABC中,C90,O为ABC的三条角平分线的交点,ODBC,OEAC,OFAB,点D、E、F分别是垂足,且AB10cm,BC8cm,CA6cm,则点O到边AB的距离为()A2cmB3cmC4cmD5cm第卷(非选择题 70分)二、填空题(5小
4、题,每小题4分,共计20分)1、如图,中,三角形的外角和的平分线交于点E,则的度数为_2、如图,已知ABC与DEF全等,且A72、B45、E63、BC10,EF10,那么D_度3、如图,的三边 的长分别为,其三条角平分线交于点,则=_4、如图,点B、C、E三点在同一直线上,且ABAD,ACAE,BCDE,若,则3_5、如图,在中,以点为圆心,任意长为半径作弧,分别交于和,再分别以点为圆心,大于二分之一为半径作弧,两弧交于点,连接并延长交于点,过点作于若,则的面积为_三、解答题(5小题,每小题10分,共计50分)1、已知:如图,点A,D,C,B在同一条直线上,AD=BC,AE=BF,CE=DF,
5、求证:(1)AECBFD(2)DE=CF2、如图,小明和小华两家位于A,B两处,隔河相望要测得两家之间的距离,小明设计如下方案:从点B出发沿河岸画一条射线BF,在BF上截取,过点D作,取点E使E,C,A在同一条直线上,则DE的长就是A,B之间的距离,说明他设计的道理3、已知RtABC中,BAC=90,AB=AC,点E为ABC内一点,连接AE,CE,CEAE,过点B作BDAE,交AE的延长线于D(1)如图1,求证BD=AE;(2)如图2,点H为BC中点,分别连接EH,DH,求EDH的度数;(3)如图3,在(2)的条件下,点M为CH上的一点,连接EM,点F为EM的中点,连接FH,过点D作DGFH,
6、交FH的延长线于点G,若GH:FH=6:5,FHM的面积为30,EHB=BHG,求线段EH的长4、如图,在ABC中,ABC、ACB的平分线交于点D,延长BD交AC于E,G、F分别在BD、BC上,连接DF、GF,其中A2BDF,GDDE(1)当A80时,求EDC的度数;(2)求证:CFFGCE5、如图,在五边形ABCDE中,AB=CD,ABC=BCD,BE,CE分别是ABC,BCD的角平分线(1)求证:ABEDCE;(2)当A=80,ABC=140,时,AED=_度(直接填空)-参考答案-一、单选题1、B【解析】【分析】根据题意逐个证明即可,只要证明,即可证明;利用三角形的外角性质即可证明; 作
7、于,于,再证明即可证明平分.【详解】解:,即,在和中,正确;,由三角形的外角性质得:,正确;作于,于,如图所示:则,在和中,平分,正确;正确的个数有3个;故选B【考点】本题是一道几何的综合型题目,难度系数偏上,关键在于利用三角形的全等证明来证明线段相等,角相等.2、D【解析】【详解】分析:根据全等三角形的判定解答即可详解:图A可以利用AAS证明全等,图B可以利用SAS证明全等,图C可以利用SAS证明全等,图D可以利用ASA证明全等其中全等的三角形有4组,故选D点睛:此题考查全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较典型,难度适中3、A【解析】【
8、分析】根据全等三角形的判定即可解决问题【详解】解:观察图象可知MNPMFD故选:A【考点】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型4、A【解析】【分析】根据直线中点、角平分线、有理数大小比较以及绝对值的性质,逐一判定即可.【详解】当三点不在同一直线上的时候,点C不是AB的中点,故错误;当OC位于AOB的内部时候,此结论成立,故错误;当为负数时,故错误;若,则,故正确;故选:A.【考点】此题主要考查直线中点、角平分线、有理数大小比较以及绝对值的性质,熟练掌握,即可解题.5、B【解析】【分析】根据三角形全等的判定做出选择即可【详解】A、,不能判断,选项不符合题意;B
9、、,利用SAS定理可以判断,选项符合题意;C、,不能判断,选项不符合题意;D、,不能判断,选项不符合题意;故选:B【考点】本题考查三角形全等的判定,根据SSS、SAS、ASA、AAS判断三角形全等,找出三角形全等的条件是解答本题的关键6、D【解析】【分析】根据旋转的性质可得CDCE和DCE90,结合ACB90,ACBC,可证ACDBCE,依据全等三角形的性质即可得到CBEA45,再由ADBF可得等腰BEF,则可计算出BEF的度数【详解】解:由旋转性质可得: CDCE,DCE90ACB90,ACBC,A45ACBDCBDCEDCB即ACDBCEACDBCECBEA45ADBF,BEBFBEFBF
10、E 67.5故选:D【考点】本题考查了旋转的性质、全等三角形的判定与性质以及等腰三角形的性质,解题的关键是熟练运用旋转的性质找出相等的线段和角,并能准确判定三角形全等,从而利用全等三角形性质解决相应的问题7、A【解析】【分析】由题意易得AOC=BOD,然后根据三角形全等的性质及角平分线的判定定理可进行求解【详解】解:AOB=COD=40,AOD是公共角,COD+AOD=BOA+AOD,即AOC=BOD,OA=OB,OC=OD,AOCBOD(SAS),AC=BD,OAC=OBD,ODB=OCA,故正确;过点O作OEAC于点E,OFBD于点F,BD与OA相交于点H,如图所示:AHM=OHB,AMB
11、=180-AHM-OAC,BOA=180-OHB-OBD,AMB=BOA=40,OEC=OFD=90,OC=OD,OCA=ODB,OECOFD(AAS),OE=OF,OM平分BMC,故正确;所以正确的个数有4个;故选A【考点】本题主要考查全等三角形的性质与判定及角平分线的判定定理,熟练掌握全等三角形的性质与判定及角平分线的判定定理是解题的关键8、C【解析】【分析】过点O作OEAB于E,OFAC于F,连接OA,根据角平分线的性质得:OEOFOD然后根据ABC的面积是12,周长是8,即可得出点O到边BC的距离【详解】如图,过点O作OEAB于E,OFAC于F,连接OA. 点O是ABC,ACB平分线的
12、交点,OEOD,OFOD,即OEOFOD SABCSABOSBCOSACOABOEBCODACOFOD(ABBCAC)OD812OD=3故选:C【考点】此题主要考查了角平分线的性质以及三角形面积求法,角的平分线上的点到角的两边的距离相等,正确表示出三角形面积是解题关键9、C【解析】【分析】证明RtBCDRtBED(HL),由全等三角形的性质得出CD=DE,则可得出答案【详解】解:,在和中,cm,cm故选:C【考点】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键10、A【解析】【分析】根据角平分线的性质得到OEOFOD,设OEx,然后利用三角形面积公式得到SABCSO
13、AB+SOAC+SOCB,于是可得到关于x的方程,从而可得到OF的长度【详解】解:点O为ABC的三条角平分线的交点,OEOFOD,设OEx,SABCSOAB+SOAC+SOCB, 5x+3x+4x24,x2,点O到AB的距离等于2故选:A【考点】本题考查了角平分线的性质:角平分线上的点到这个角两边的距离相等,面积法的应用是解题的关键二、填空题1、【解析】【分析】本题先通过三角形内角和求解BAC与BCA的和,继而利用邻补角以及角分线定义求解EAC与ECA的和,最后利用三角形内角和求解此题【详解】,又,三角形的外角和的平分线交于点E,即故填:【考点】本题考查三角形内角和公式以及角分线和邻补角的定义
14、,难度较低,按照对应考点定义求解即可2、【解析】【分析】ABC中,根据三角形内角和定理求得C63,那么CE根据相等的角是对应角,相等的边是对应边得出ABCDFE,然后根据全等三角形的对应角相等即可求得D【详解】解:在ABC中,A72,B45,C180AB63,E63,CEABC与DEF全等,BC10,EF10,ABCDFE,DA72,故答案为72【考点】本题考查了全等三角形的性质;注意:题目条件中ABC与DEF全等,但是没有明确对应顶点得出ABCDFE是解题的关键3、【解析】【分析】首先过点O作ODAB于点D,作OEAC于点E,作OFBC于点F,由OA,OB,OC是ABC的三条角平分线,根据角
15、平分线的性质,可得OD=OE=OF,又由ABC的三边AB、BC、CA长分别为40、50、60,即可求得SABO:SBCO:SCAO的值【详解】解:过点O作ODAB于点D,作OEAC于点E,作OFBC于点F,OA,OB,OC是ABC的三条角平分线,OD=OE=OF,ABC的三边AB、BC、CA长分别为40、50、60,SABO:SBCO:SCAO=(ABOD):(BCOF):(ACOE)=AB:BC:AC=40:50:60=故答案为:【考点】此题考查了角平分线的性质此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用4、47【解析】【分析】根据“边边边”证明,再根据全等三角形的性质可得AB
16、C1,BAC2,然后利用三角形的一个外角等于与它不相邻的两个内角和求出312,然后求解即可【详解】解:在ABC和ADE中,(SSS),ABC1,BAC2,3ABCBAC12,故答案为:47【考点】本题主要考查了全等三角形的判定与性质以及三角形的外角等于与它不相邻的两个内角和的性质,熟练掌握三角形全等的判定方法是解题关键5、5【解析】【分析】作GMAB于M,先利用基本作图得到AG平分BAC,再根据角平分线的性质得到GM=GH=2,然后根据三角形面积公式计算【详解】解:作GMAB于M,由作法得AG平分BAC,而GHAC,GMAB,GM=GH=2,,故答案为:5【考点】此题考查了角平分线的性质定理:
17、角平分线上的点到这个角的两边的距离相等,还考查了角平分线的作图方法,正确理解题意得到AG平分BAC是解题的关键三、解答题1、 (1)见解析(2)见解析【解析】【分析】(1)由线段的和差可得AC=BD,继而利用“SSS”即可求证结论;(2)由(1)可知A=B,继而利用“SAS”求证AEDBFC,根据全等三角形的性质即可求证结论(1)证明:AD=BC,AD+DC=BC+DC,即AC=BD,在AEC和BFD中,AECBFD(SSS),(2)由(1)可知AECBFD,A=B,在AED和BFC中,,AEDBFC(SAS),DE=CF【考点】本题考查了全等三角形的判定及其性质,解题的关键是能够根据已知条件
18、和隐藏条件正确选择全等三角形的判定方法2、见解析【解析】【分析】根据两直线平行,内错角相等可得,然后利用“角角边”证明和全等,根据全等三角形对应边相等解答;【详解】解:,在和中,即的长就是、两点之间的距离【考点】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键3、(1)见解析;(2)EDH45;(3)EH10【解析】【分析】(1)根据全等三角形的判定得出CAEABD,进而利用全等三角形的性质得出AEBD即可;(2)根据全等三角形的判定得出AEHBDH,进而利用全等三角形的性质解答即可;(3)过点M作MSFH于点S,过点E作ERFH,交HF的延长线于点R,过点E作ETBC,根
19、据全等三角形判定和性质解答即可【详解】证明:(1)CEAE,BDAE,AECADB90,BAC90,ACE+CAECAE+BAD90,ACEBAD,在CAE与ABD中CAEABD(AAS),AEBD;(2)连接AHABAC,BHCH,BAH,AHB90,ABHBAH45,AHBH,EAHBAHBAD45BAD,DBH180ADBBADABH45BAD,EAHDBH,在AEH与BDH中AEHBDH(SAS),EHDH,AHEBHD,AHE+EHBBHD+EHB90即EHD90,EDHDEH;(3)过点M作MSFH于点S,过点E作ERFH,交HF的延长线于点R,过点E作ETBC,交HR的延长线于点
20、TDGFH,ERFH,DGHERH90,HDG+DHG90DHE90,EHR+DHG90,HDGHER在DHG与HER中 DHGHER (AAS),HGER,ETBC,ETFBHG,EHBHET,ETFFHM,EHBBHG,HETETF,HEHT,在EFT与MFH中,EFTMFH(AAS),HFFT,ERMS,HGERMS,设GH6k,FH5k,则HGERMS6k,k,FH5,HEHT2HF10【考点】本题考查全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会利用数形结合的思想思考问题,属于压轴题4、 (1)(2)证明见解析【解析】【分析】(1)根据三角形内角和与角平分
21、线定义可得,再根据外角性质即可求出;(2)在线段上取一点,使,连接,证明,得到,利用全等三角形的性质与外角性质得出,证明,从而得到,即可证明结论(1)解:在ABC中,A80,ABC、ACB的平分线交于点D,EDC=DBC+DCB;(2)解:在线段上取一点,使,连接,如图所示:平分,在和中,为的一个外角,为的一个外角,平分,A2BDF,在和中,【考点】本题考查三角形综合,涉及到三角形内角和定理的运用、角平分线定义、外角性质求角度、三角形全等的判定与性质等知识点,正确的做辅助线是解决问题的关键5、 (1)见解析;(2)100【解析】【分析】(1)根据ABC=BCD,BE,CE分别是ABC,BCD的角平分线,可得ABE=DCE,CBE=BCE,推出BE=CE,由此利用SAS证明ABEDCE;(2)根据三角形全等的性质求出D的度数,利用公式求出五边形的内角和,即可得到答案(1)证明:ABC=BCD,BE,CE分别是ABC,BCD的角平分线,ABE=CBE=ABC,BCE=DCE=BCD,ABE=DCE,CBE=BCE,BE=CE,又AB=CD,ABEDCE(SAS);(2)ABEDCE,D=A=80,五边形ABCDE的内角和为,AED=,故答案为:100【考点】此题考查了全等三角形的判定及性质,多边形内角和计算,正确掌握全等三角形的判定及性质定理是解题的关键
Copyright@ 2020-2024 m.ketangku.com网站版权所有