ImageVerifierCode 换一换
格式:DOCX , 页数:27 ,大小:471KB ,
资源ID:958632      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-958632-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(基础强化人教版八年级数学上册第十二章全等三角形专项训练练习题(含答案详解).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

基础强化人教版八年级数学上册第十二章全等三角形专项训练练习题(含答案详解).docx

1、八年级数学上册第十二章全等三角形专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知是的角平分线,是的垂直平分线,则的长为()A6B5C4D2、如图,ABC与DEF是全等三角形,则图中的相等

2、线段有()A1B2C3D43、如图,已知能直接判断的方法是()ABCD4、如图所示,是的边上的中线,cm,cm,则边的长度可能是()A3cmB5cmC14cmD13cm5、如图,在ABC中,C=90,点D在AC上,DEAB,若CDE=165,则B的度数为()A15B55C65D756、如图,在中,点E在BC的延长线上,的平分线BD与的平分线CD相交于点D,连接AD,则下列结论中,正确的是ABCD7、下列说法正确的是()近似数精确到十分位;在,中,最小的是;如图所示,在数轴上点所表示的数为;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;如图,在内一点到这三

3、条边的距离相等,则点是三个角平分线的交点A1B2C3D48、如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使ABECDF,则添加的条件不能是()AAE=CFBBE=FDCBF=DED1=29、如图,在和中,则下列结论中错误的是()ABCDE为BC中点10、作的平分线时,以O为圆心,某一长度为半径作弧,与OA,OB分别相交于C,D,然后分别以C,D为圆心,适当的长度为半径作弧使两弧在的内部相交于一点,则这个适当的长度()A大于B等于C小于D以上都不对第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,两根旗杆间相距20米,某人从点B沿BA走向点

4、A,一段时间后他到达点M,此时他分别仰望旗杆的顶点C和D,两次视线的夹角为90,且CMDM已知旗杆BD的高为12米,该人的运动速度为2米/秒,则这个人运动到点M所用时间是_秒2、如图,在ABC中,ACB90,ACBC,BECE,ADCE于D,AD2,BE1则DE_3、如图,在中,、的平分线相交于点I,且,若,则的度数为_度4、如图,ABBC于B,DCBC于C,AB=6,BC=8,CD=2,点P为BC边上一动点,当BP_时,形成的RtABP与RtPCD全等5、如图,在和中,以点为顶点作,两边分别交,于点,连接,则的周长为_三、解答题(5小题,每小题10分,共计50分)1、已知:如图,点A,D,C

5、,B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:(1)AECBFD(2)DE=CF2、如图,在ABC中,ABC=90,AB=CB,点E在边BC上,点F在边AB的延长线上,BE=BF(1)求证:ABECBF;(2)若CAE=30,求ACF的度数3、如图,小明和小华两家位于A,B两处,隔河相望要测得两家之间的距离,小明设计如下方案:从点B出发沿河岸画一条射线BF,在BF上截取,过点D作,取点E使E,C,A在同一条直线上,则DE的长就是A,B之间的距离,说明他设计的道理4、如图1,点P、Q分别是边长为4cm的等边三角形ABC的边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且

6、它们的速度都为1cm/s(1)连接AQ、CP交于点M,则在P,Q运动的过程中,证明;(2)会发生变化吗?若变化,则说明理由,若不变,则求出它的度数;(3)P、Q运动几秒时,是直角三角形?(4)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则变化吗?若变化说明理由,若不变,则求出它的度数。5、(2019秋九龙坡区校级月考)如图在四边形ABCD中,B+ADC180,ABAD,E、F分别是边BC、CD延长线上的点,且EAFBAD,求证:EFBEFD-参考答案-一、单选题1、D【解析】【分析】根据ED是BC的垂直平分线、BD是角平分线以及A=90可求得C=DBC=

7、ABD=30,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【详解】ED是BC的垂直平分线,DB=DC,C=DBC,BD是ABC的角平分线,ABD=DBC,A=90,C+ABD+DBC=90,C=DBC=ABD=30,BD=2AD=6,CD=6,CE =3,故选D【考点】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.2、D【解析】【分析】全等三角形的对应边相等,据此可得出AB=DE,AC=DF,BC=EF;再根据BC-EC=EF-EC,可得出一组线段相等,据此找出组数,问题可解.【详

8、解】ABCDEF,AB=DE,AC=DF,BC=EF,BC-EC=EF-EC,即BE=CF.故共有四组相等线段.故选D.【考点】本题主要考查全等三角形的性质,全等三角形的对应边相等.3、A【解析】【分析】根据三角形全等的判定定理解答.【详解】在ABC和DCB中,,(SAS),故选:A.【考点】此题考查全等三角形的判定定理:SSS、SAS、ASA、AAS、HL,根据已知条件找到全等所需的对应相等的边或角是解题的关键.4、B【解析】【分析】延长AD至M使DM=AD,连接CM,根据SAS得出,得出AB=CM=4cm,再根据三角形的三边关系得出AC的范围,从而得出结论【详解】解:延长AD至M使DM=A

9、D,连接CM,是的边上的中线,BD=CD,ADB=CDM,,MC=AB=5cm,AD=DM=4cm,AM=8cm在中,即:3AC13,故选:B【考点】本题考查了全等三角形的判定与性质以及三角形的三边关系,根据三角形的三边关系找出AC长度的取值范围是解题的关键5、D【解析】【分析】根据邻补角定义可得ADE=15,由平行线的性质可得A=ADE=15,再根据三角形内角和定理即可求得B=75【详解】解:CDE=165,ADE=15,DEAB,A=ADE=15,B=180CA=1809015=75,故选D【考点】本题考查了平行线的性质、三角形内角和定理等,熟练掌握平行线的性质以及三角形内角和定理是解题的

10、关键6、B【解析】【分析】由ABC=50,ACB=60,可判断出ACAB,根据三角形内角和定理可求出BAC的度数,根据邻补角定义可求出ACE度数,由BD平分ABC,CD平分ACE,根据角平分线的定义以及三角形外角的性质可求得BDC的度数,继而根据三角形内角和定理可求得DOC的度数,据此对各选项进行判断即可得.【详解】ABC=50,ACB=60,BAC=180-ABC-ACB=70,ACE=180-ACB=120,ACAB,BD平分ABC,CD平分ACE,DBC=ABC=25,DCE=ACD=ACE=60,BDC=DCE-DBC=35,DOC=180-OCD-ODC=180-60-35=85,D

11、BC=25,BDC=35,BCCD,故选B.【考点】本题考查了三角形内角和定理,等腰三角形判定,角平分线的定义等,熟练掌握角平分线的定义以及三角形内角和定理是解本题的关键.7、B【解析】【分析】根据近似数的精确度定义,可判断;根据实数的大小比较,可判断;根据点在数轴上所对应的实数,即可判断;根据反证法的概念,可判断;根据角平分线的性质,可判断【详解】近似数精确到十位,故本小题错误;,最小的是,故本小题正确;在数轴上点所表示的数为,故本小题错误;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角或三个钝角”,故本小题错误;在内一点到这三条边的距离相等,则点是三个角

12、平分线的交点,故本小题正确故选B【考点】本题主要考查近似数的精确度定义,实数的大小比较,点在数轴上所对应的实数,反证法的概念,角平分线的性质,熟练掌握上述知识点,是解题的关键8、A【解析】【分析】利用平行四边形的性质以及全等三角形的判定分别得出即可【详解】解:A、若添加条件:AE=CF,因为ABD=CDB,不是两边的夹角,所以不能证明ABECDF,所以错误,符合题意,B、若添加条件:BE=FD,可以利用SAS证明ABECDF,所以正确,不符合题意;C、若添加条件:BF=DE,可以得到BE=FD,可以利用SAS证明ABECDF,所以正确,不符合题意;D、若添加条件:1=2,可以利用ASA证明AB

13、ECDF,所以正确,不符合题意;故选:A【考点】本题考查了平行四边形的性质、全等三角形的判定,解题的关键是掌握三角形的判定定理9、D【解析】【分析】首先证明,推出,由,推出,推出,即可一一判断【详解】解:,和为直角三角形,在和中, , , , 故A、B、C正确,故选:D【考点】本题主要考查全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定和性质10、A【解析】【分析】根据作已知角的角平分线的方法即可判断【详解】因为分别以C,D为圆心画弧时,要保证两弧在的内部交于一点,所以半径应大于,故选:A【考点】本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已

14、知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)二、填空题1、4【解析】【分析】根据角的等量代换求出,便可证出,利用全等的性质得到,从而求出的长,再通过时间=路程速度列式计算即可【详解】解:根据题意可得:,又在和中时间=故答案为4【考点】本题主要考查了全等三角形的判定与性质,利用角的等量代换找出三角形全等的条件是解题的关键2、1【解析】【分析】先证明ACDCBE,再求出DE的长,解决问题【详解】解:BECE于E,ADCE于D,故答案为:1【考点】此题考查三角形全等的判定和性质,掌握再全等三角形的判定和性质是解题的关键3、70【解析】【分析】在BC上取点D,令,利用SA

15、S定理证明得到,再利用得到,所以,再由角平分线可得,利用以及AI平分可知【详解】解:在BC上取点D,令,连接DI,BI,如下图所示:CI平分在和中,即:AI平分、CI平分,BI平分,故答案为:70【考点】本题考查角平分线,全等三角形的判定及性质,三角形的一个外角等于与它不相邻的两个内角的和,利用,在BC上取点D等于AC,作出辅助线是解本题的关键点,也是难点4、2【解析】【分析】当BP=2时,RtABPRtPCD,由BC=8可得CP=6,进而可得AB=CP,BP=CD,再结合ABBC、DCBC可得B=C=90,可利用SAS判定ABPPCD【详解】当BP=2时,RtABPRtPCD理由如下:BC=

16、8,BP=2,PC=6,AB=PCABBC,DCBC,B=C=90在ABP和PCD中,ABPPCD(SAS)故答案为:2【考点】本题考查了全等三角形的判定,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)是解题的关键注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角相等时,角必须是两边的夹角5、4【解析】【分析】延长AC至E,使CE=BM,连接DE证明BDMCDE(SAS),得出MD=ED,MDB=EDC,证明MDNEDN(SAS),得出MN=EN=CN+CE,进而得出答案【详解】延长AC至E,使CE=BM,连接DEBD=CD,且B

17、DC=140,DBC=DCB=20,A=40,AB=AC=2,ABC=ACB=70,MBD=ABC+DBC=90,同理可得NCD=90,ECD=NCD=MBD=90,在BDM和CDE中, BDMCDE(SAS),MD=ED,MDB=EDC,MDE=BDC=140,MDN=70,EDN=70=MDN,在MDN和EDN中,MDNEDN(SAS),MN=EN=CN+CE,AMN的周长=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4;故答案为:4【考点】本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;构造辅助线证明三角形全等是解题的关键三、解答题1、 (1)

18、见解析(2)见解析【解析】【分析】(1)由线段的和差可得AC=BD,继而利用“SSS”即可求证结论;(2)由(1)可知A=B,继而利用“SAS”求证AEDBFC,根据全等三角形的性质即可求证结论(1)证明:AD=BC,AD+DC=BC+DC,即AC=BD,在AEC和BFD中,AECBFD(SSS),(2)由(1)可知AECBFD,A=B,在AED和BFC中,,AEDBFC(SAS),DE=CF【考点】本题考查了全等三角形的判定及其性质,解题的关键是能够根据已知条件和隐藏条件正确选择全等三角形的判定方法2、(1)见解析;(2)ACF的度数为60【解析】【分析】(1)由ABC=90可得CBF=90

19、,再由SAS就即可得出ABECBF;(2)根据题意可得BAC=ACB=45由CAE=30可得BAE=15,即BCF=15,进而可以求出ACF的度数【详解】(1)证明:ABC=90,ABC=CBF=90在ABE和CBF中,ABECBF(SAS);(2)解:ABECBF,BAE=BCF,ABC=90,AB=CB,BCA=BAC=45,CAE=30,BAE=15,BCF=15,ACF=BCF+ACB,ACF=15+45=60答:ACF的度数为60.【考点】本题主要考查全等三角形的判定与性质,解此题的关键在于熟练掌握全等三角形的判定方法.3、见解析【解析】【分析】根据两直线平行,内错角相等可得,然后利

20、用“角角边”证明和全等,根据全等三角形对应边相等解答;【详解】解:,在和中,即的长就是、两点之间的距离【考点】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键4、(1)见解析;(2)CMQ=60,不变;(3)当第秒或第秒时,PBQ为直角三角形;(4)CMQ=120,不变【解析】【分析】(1)利用SAS可证全等;(2)先证ABQCAP,得出BAQ=ACP,通过角度转化,可得出CMQ=60;(3)存在2种情况,一种是PQB=90,另一种是BPQ=90,分别根据直角三角形边直角的关系可求得t的值;(4)先证PBCACQ,从而得出BPC=MQC,然后利用角度转化可得出CMQ=120

21、【详解】(1)证明:在等边三角形ABC中,AB=AC,B=CAP=60又由题中“点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s.”可知:AP=BQ;(2)CMQ=60不变等边三角形中,AB=AC,B=CAP=60又由条件得AP=BQ,ABQCAP(SAS),BAQ=ACP,CMQ=ACP+CAM=BAQ+CAM=BAC=60;(3)设时间为t,则AP=BQ=t,PB=4-t,当PQB=90时,B=60,PB=2BQ,得4-t=2t,t=;当BPQ=90时,B=60,BQ=2BQ,得t=2(4-t),t=;当第秒或第秒时,PBQ为直角三角形;(4)CMQ=120不变,在等边三角形

22、中,AB=AC,B=CAP=60,PBC=ACQ=120,又由条件得BP=CQ,PBCACQ(SAS),BPC=MQC,又PCB=MCQ,CMQ=PBC=180-60=120【考点】本题考查动点问题中三角形的全等,解题关键是找出图形中的全等三角形,利用全等三角形的性质进行角度转化,得出需要的结论5、详见解析【解析】【分析】在BE上截取BG,使BGDF,连接AG根据SAS证明ABGADF得到AGAF,BAGDAF,根据EAFBAD,可知GAEEAF,可证明AEGAEF,EGEF,那么EFGEBEBGBEDF【详解】证明:在BE上截取BG,使BGDF,连接AGB+ADC180,ADF+ADC180,BADF在ABG和ADF中,ABGADF(SAS),BAGDAF,AGAFBAG+EADDAF+EADEAFBADGAEEAF在AEG和AEF中,AEGAEF(SAS)EGEF,EGBEBGEFBEFD【考点】此题主要考查全等三角形的判定与性质,解题的关键是根据已知条件作出辅助线求解

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1