ImageVerifierCode 换一换
格式:DOCX , 页数:27 ,大小:1.10MB ,
资源ID:958623      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-958623-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(基础强化人教版八年级数学上册第十二章全等三角形专项测评试卷(含答案详解版).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

基础强化人教版八年级数学上册第十二章全等三角形专项测评试卷(含答案详解版).docx

1、八年级数学上册第十二章全等三角形专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知,则图中全等三角形的总对数是A3B4C5D62、作平分线的作图过程如下:作法:(1)在和上分别截取、,使(

2、2)分别以,为圆心,大于的长为半径作弧,两弧交于点(3)作射线,则就是的平分线用下面的三角形全等的判定解释作图原理,最为恰当的是()ABCD3、下列说法正确的是()A两个长方形是全等图形B形状相同的两个三角形全等C两个全等图形面积一定相等D所有的等边三角形都是全等三角形4、已知AOB60,以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在AOB内交于点P,以OP为边作POC15,则BOC的度数为()A15B45C15或30D15或455、下列各组中的两个图形属于全等图形的是()ABCD6、如图,在中,D是上一点,于点E,连接,若,则

3、等于()ABCD7、如图为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得ABC65,ACB35,然后在M处立了标杆,使MBC65,MCB35,得到MBCABC,所以测得MB的长就是A,B两点间的距离,这里判定MBCABC的理由是()ASASBAAACSSSDASA8、如图,ABC是边长为4的等边三角形,点P在AB上,过点P作PEAC,垂足为E,延长BC至点Q,使CQPA,连接PQ交AC于点D,则DE的长为()A1B1.8C2D2.59、在正方形网格中,AOB的位置如图所示,到AOB两边距离相等的点应是()A点MB点NC点PD点Q10、如图,在ABC和DEF中,ABDE,AB

4、DE,运用“SAS”判定ABCDEF,需补充的条件是()AACDFBADCBECFDACBDFE第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知ABC与DEF全等,且A72、B45、E63、BC10,EF10,那么D_度2、如图,若ABCA1B1C1,且A110,B40,则C1_3、如图,在与中,若,则的度数为_4、如图,在中,、的平分线相交于点I,且,若,则的度数为_度5、如图,在中,D是上的一点,平分,交于点E,连接,若,则_三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC中,ABC、ACB的平分线交于点D,延长BD交AC于E,G、F分别在

5、BD、BC上,连接DF、GF,其中A2BDF,GDDE(1)当A80时,求EDC的度数;(2)求证:CFFGCE2、如图,已知AC平分BAD,CEAB于E,CFAD于F,且BC=CD(1)求证:BCEDCF;(2)求证:AB+AD=2AE.3、小明的学习过程中,对教材中的一个有趣问题做如下探究:(1)【习题回顾】已知:如图1,在中,是角平分线,是高,相交于点求证:;(2)【变式思考】如图2,在中,是边上的高,若的外角的平分线交的延长线于点,其反向延长线与边的延长线交于点,若,求和的度数;(3)【探究延伸】如图3,在中,在上存在一点,使得,角平分线交于点的外角的平分线所在直线与的延长线交于点若,

6、求的度数4、如图,在ABC中,AD平分BAC,C=90,DEAB于点E,点F在AC上,BD=DF(1)求证:CF=EB;(2)若AB=14,AF=8,求CF的长5、如图,在中,点D在线段BC上运动(D不与B、C重合),连接AD,作,DE交线段AC于E(1)点D从B向C运动时,逐渐变_(填“大”或“小”),但与的度数和始终是_度(2)当DC的长度是多少时,并说明理由-参考答案-一、单选题1、D【解析】【分析】根据全等三角形的判定方法进行判断全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件【详解】解:ABDC,ADBC,DAC=BCA,CDB=ABD,DCA=BAC,ADB=CB

7、D,又BE=DF,由ADB=CBD,DB=BD,ABD=CDB,可得ABDCDB;由DAC=BCA,AC=CA,DCA=BAC,可得ACDCAB;AO=CO,DO=BO,由DAO=BCO,AO=CO,AOD=COB,可得AODCOB;由CDB=ABD,COD=AOB,CO=AO,可得CODAOB;由DCA=BAC,COF=AOE,CO=AO,可得AOECOF;由CDB=ABD,DOF=BOE,DO=BO,可得DOFBOE;故选D【考点】本题主要考查了全等三角形的判定与性质的运用,解题时注意:若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,或者是两角的

8、夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边2、A【解析】【分析】根据作图过程可得OD=OE,CE=CD,根据OC为公共边,利用SSS即可证明OCEOCD,即可得答案【详解】分别以,为圆心,大于的长为半径作弧,两弧交于点;CE=CD,在OCE和OCD中,OCEOCD(SSS),故选:A【考点】本题考查全等三角形的判定,正确找出相等的线段并熟练掌握全等三角形的判定定理是解题关键3、C【解析】【分析】性质、大小完全相同的两个图形是全等形,根据定义解答【详解】A、两个长方形的长或宽不一定相等,故不是全等图形;B、由于大小不一定相同,故形状相同的两个三角形不一定全等;C、两个全等图形

9、面积一定相等,故正确;D、所有的等边三角形大小不一定相同,故不一定是全等三角形;故选:C【考点】此题考查全等图形的概念及性质,熟记概念是解题的关键4、D【解析】【分析】根据题意作图,可得出OP为AOB的角平分线,有,以OP为边作POC15,则BOC的度数有两种情况,依据所作图形即可得解.【详解】解:(1)以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在AOB内交于点P,则OP为AOB的平分线,(2)两弧在AOB内交于点P,以OP为边作POC15,则BOC15或45,故选:D【考点】本题考查的知识点是根据题意作图并求解,依据题意作出

10、正确的图形是解题的关键.5、B【解析】【分析】根据全等图形的定义,逐一判断选项,即可【详解】A.两个图形不能完全重合,不是全等图形,不符合题意,B.两个图形能完全重合,是全等图形,符合题意,C.两个图形不能完全重合,不是全等图形,不符合题意,D.两个图形不能完全重合,不是全等图形,不符合题意,故选B【考点】本题主要考查全等图形的定义,熟练掌握“能完全重合的两个图形,是全等图形”是解题的关键6、C【解析】【分析】证明RtBCDRtBED(HL),由全等三角形的性质得出CD=DE,则可得出答案【详解】解:,在和中,cm,cm故选:C【考点】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定

11、方法是解题的关键7、D【解析】【分析】利用全等三角形的判定方法进行分析即可【详解】解:在ABC和MBC中,MBCABC(ASA),故选:D【考点】本题考查了全等三角形的应用,熟练掌握三角形全等的判定定理是解题的关键8、C【解析】【分析】过作的平行线交于,通过证明,得,再由是等边三角形,即可得出【详解】解:过作的平行线交于,是等边三角形,是等边三角形,CQPA,在中和中,于,是等边三角形,故选:C【考点】本题主要考查了等边三角形的判定与性质,全等三角形的判定与性质,作辅助线构造全等三角形是解题的关键9、A【解析】【分析】利用到角的两边的距离相等的点在角的平分线上进行判断【详解】点P、Q、M、N中

12、在AOB的平分线上的是M点故选:A【考点】本题主要考查了角平分线的性质,根据正方形网格看出AOB平分线上的点是解答问题的关键10、C【解析】【分析】证出ABCDEF,由SAS即可得出结论【详解】解:补充BECF,理由如下:ABDE,ABCDEF,若要利用SAS判定,B、D选项不符合要求,若A:AC=DF,构成的是SSA,不能证明三角形全等,A选项不符合要求,C选项:BE=CF,BECF,BCEF,在ABC和DEF中,ABCDEF(SAS),故选:C【考点】此题主要考查全等三角形的判定,解题的关键是熟知“SAS”的判定的特点二、填空题1、【解析】【分析】ABC中,根据三角形内角和定理求得C63,

13、那么CE根据相等的角是对应角,相等的边是对应边得出ABCDFE,然后根据全等三角形的对应角相等即可求得D【详解】解:在ABC中,A72,B45,C180AB63,E63,CEABC与DEF全等,BC10,EF10,ABCDFE,DA72,故答案为72【考点】本题考查了全等三角形的性质;注意:题目条件中ABC与DEF全等,但是没有明确对应顶点得出ABCDFE是解题的关键2、30【解析】【分析】本题实际上是全等三角形的性质以及根据三角形内角和等于180来求角的度数【详解】ABCA1B1C1,C1=C,又C=180-A-B=180-110-40=30,C1=C=30故答案为30【考点】本题考查了全等

14、三角形的性质;解答时,除必备的知识外,还应将条件和所求联系起来,即将所求的角与已知角通过全等及三角形内角之间的关系联系起来3、40【解析】【分析】先利用HL定理证明RtABCRtDEF,得出D的度数,再根据直角三角形两锐角互余即可得出的度数【详解】解:在RtABC与RtDEF中,B=E=90,AC=DF,AB=DE,RtABCRtDEF(HL)D=A=50,DFE=90-D=90-50=40故答案为:40【考点】此题主要考查直角三角形全等的HL定理理解斜边和一组直角边对应相等的两个直角三角形全等是解题关键4、70【解析】【分析】在BC上取点D,令,利用SAS定理证明得到,再利用得到,所以,再由

15、角平分线可得,利用以及AI平分可知【详解】解:在BC上取点D,令,连接DI,BI,如下图所示:CI平分在和中,即:AI平分、CI平分,BI平分,故答案为:70【考点】本题考查角平分线,全等三角形的判定及性质,三角形的一个外角等于与它不相邻的两个内角的和,利用,在BC上取点D等于AC,作出辅助线是解本题的关键点,也是难点5、55【解析】【分析】根据SAS证明ACEDCE,根据全等三角形的性质可得CDEA100,再根据三角形外角的性质可求BED【详解】解:CE平分ACB,ACEDCE,在ACE与DCE中,ACEDCE(SAS),CDEA100,B45,BEDCDE-B100-4555,故答案为:5

16、5【考点】本题考查了全等三角形的判定与性质,三角形外角的性质,关键是得到CDEA100三、解答题1、 (1)(2)证明见解析【解析】【分析】(1)根据三角形内角和与角平分线定义可得,再根据外角性质即可求出;(2)在线段上取一点,使,连接,证明,得到,利用全等三角形的性质与外角性质得出,证明,从而得到,即可证明结论(1)解:在ABC中,A80,ABC、ACB的平分线交于点D,EDC=DBC+DCB;(2)解:在线段上取一点,使,连接,如图所示:平分,在和中,为的一个外角,为的一个外角,平分,A2BDF,在和中,【考点】本题考查三角形综合,涉及到三角形内角和定理的运用、角平分线定义、外角性质求角度

17、、三角形全等的判定与性质等知识点,正确的做辅助线是解决问题的关键2、详见解析【解析】【分析】(1)由角平分线定义可证BCEDCF(HL);(2)先证RtFACRtEAC,得AF=AE,由(1)可得AB+AD=(AE+BE)+(AFDF)=AE+BE+AEDF=2AE.【详解】(1)证明:AC是角平分线,CEAB于E,CFAD于F,CE=CF,F=CEB=90,在RtBCE和RtDCF中,BCEDCF;(2)解:CEAB于E,CFAD于F,F=CEA=90,在RtFAC和RtEAC中,RtFACRtEAC,AF=AE,BCEDCF,BE=DF,AB+AD=(AE+BE)+(AFDF)=AE+BE

18、+AEDF=2AE.【考点】本题考查了全等三角形的判定、性质和角平分线定义,注意:全等三角形的对应角相等,对应边相等,直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL3、 (1)见解析;(2)25,25;(3)55【解析】【分析】(1)由余角的性质可得BACD,由角平分线的性质和外角的性质可得结论;(2)由三角形内角和定理可求GAF130,由角平分线的性质可求GAF65,由余角的性质可求解;(3)由平角的性质和角平分线的性质可求EAN90,由外角的性质可求解(1)证明:ACB90,CD是高,B+CAB90,ACD+CAB90,BACD,AE是角平分线,CAFDAF,CFECAF+

19、ACDCEFDAF+B,CEFCFE;(2)解:B40,ACB90,GABB+ACB40+90130,AF为BAG的角平分线,GAFDAF13065,CD为AB边上的高,ADFACE90,CFE90GAF906525,又CAEGAF65,ACB90,CEF90CAE906525;(3)证明:C、A、G三点共线,AE、AN为角平分线,EAN90,又GANCAM,M+CEF90,CEFEAB+B,CFEEAC+ACD,ACDB,CEFCFE,M+CFE90CFE90M903555【考点】本题考查了三角形的外角性质,三角形的内角和定理,余角的性质等知识,灵活运用这些性质解决问题是解题的关键4、 (1

20、)见详解(2)3【解析】【分析】(1)利用角平分线的性质可得,再利用“HL”证明,再利用全等三角形的性质求解;(2)利用“HL“证明,可得,设,则 ,即可建立方程求解(1)证明:于点E,又AD平分, ,在和中, ,;(2)解:在和中, ,设,则,解得 ,故【考点】本题考查了直角三角形全等的判定与性质,角平分线的性质,在图形中找到正确的全等三角形以及熟悉直角三角形全等的性质与判定是关键5、 (1)小;140(2)当DC=2时,ABDDCE,理由见解析【解析】【分析】(1)利用三角形的内角和即可得出结论;(2)当DC=2时,利用DEC+EDC=140,ADB+EDC=140,求出ADB=DEC,再利用AB=DC=2,即可得出ABDDCE(1)在ABD中,B+BAD+ADB=180,设BAD=x,BDA=y,40+x+y=180,y=140-x(0x100),当点D从点B向C运动时,x增大,y减小,+=180-故答案为:小,140;(2)当DC=2时,ABDDCE,理由:C=40,DEC+EDC=140,又ADE=40,ADB+EDC=140,ADB=DEC,又AB=DC=2, 在ABD和DCE中,ABDDCE(AAS);【考点】此题主要考查学生对等腰三角形的判定与性质,全等三角形的判定与性质,三角形外角的性质等知识点的理解和掌握,三角形的内角和公式,解本题的关键是分类讨论

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1