ImageVerifierCode 换一换
格式:DOCX , 页数:24 ,大小:355.08KB ,
资源ID:958616      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-958616-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(基础强化人教版八年级数学上册第十三章轴对称综合练习试卷(详解版).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

基础强化人教版八年级数学上册第十三章轴对称综合练习试卷(详解版).docx

1、人教版八年级数学上册第十三章轴对称综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为

2、500米,则牧童从A处把牛牵到河边饮水再回家,最短距离是()A750米B1000米C1500米D2000米2、下列三角形中,等腰三角形的个数是()A4个B3个C2个D1个3、对于问题:如图1,已知AOB,只用直尺和圆规判断AOB是否为直角?小意同学的方法如图2:在OA、OB上分别取C、D,以点C为圆心,CD长为半径画弧,交OB的反向延长线于点E,若测量得OE=OD,则AOB=90.则小意同学判断的依据是()A等角对等边B线段中垂线上的点到线段两段距离相等C垂线段最短D等腰三角形“三线合一”4、如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,

3、沿AH和DH剪下,这样剪得的ADH中 ( )AAH=DHADBAH=DH=ADCAH=ADDHDAHDHAD5、下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )ABCD6、以下四大通讯运营商的企业图标中,是轴对称图形的是()ABCD7、如图,在ABC中,AD是BC边上的高,BAF=CAG=90,AB=AF,AC=AG,连接FG,交DA的延长线于点E,连接BG,CF, 则下列结论:BG=CF;BGCF;EAF=ABC;EF=EG,其中正确的有()ABCD8、一个三角形具备下列条件仍不是等边三角形的是()A一个角的平分线是对边的中线或高线B两边相等,有一个内

4、角是60C两角相等,且两角的和是第三个角的2倍D三个内角都相等9、如图,在中,DE是AC的垂直平分线,的周长为13cm,则的周长为()A16cmB13cmC19cmD10cm10、如图,已知ABC,ABBC,用尺规作图的方法在BC上取一点P,使得PA+PCBC,则下列选项正确的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABC中,AB=AC,D、E分别在CA、BA的延长线上,连接BD、CE,且D+E=180,若BD=6,则CE的长为_2、如图,已知等边三角形ABC中,点D,E分别在边AB,BC上,把BDE沿直线DE翻折,使点B落在B处,DB,E

5、B分别交AC于点F,G.若ADF80,则DEG的度数为_3、如图,在中,D、E是内两点AD平分,若,则_cm4、在平面直角坐标系中,点与点关于轴对称,则的值是_5、如图,在锐角中,平分,、分别是、上的动点,则的最小值是_三、解答题(5小题,每小题10分,共计50分)1、在边长为1个单位长度的小正方形网格中,建立平面直角坐标系,已知点O为坐标原点,点C的坐标为(3,1)(1)写出点A和点B的坐标,并在图中画出与ABC关于x轴对称的图形;(2)写出点B1的坐标,连接CB1,则线段CB1的长为 (直接写出得数)2、已知:在四边形ABCD中,对角线AC、BD相交于点E,且ACBD,作BFCD,垂足为点

6、F,BF与AC交于点C,BGE=ADE(1)如图1,求证:AD=CD;(2)如图2,BH是ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于ADE面积的2倍3、如图,在ABC中,ACB=90,D是BC延长线上一点,E是AB上的一点,且在BD的垂直平分线EG上,DE交AC于点F,求证:点E在AF的垂直平分线上4、如图,已知ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若ABC=50,求BOC的度数5、如图,在正方形网格上的一个ABC,且每个小正方形的边长为1(其中点A,B,C均

7、在网格上)(1)作ABC关于直线MN的轴对称图形ABC;(2)在MN上画出点P,使得PA+PC最小;(3)求出ABC的面积-参考答案-一、单选题1、B【解析】【详解】解:作A的对称点,连接B交CD于P,AP+PB=,此时值最小,在中,,,点A到河岸CD的中点的距离为500米,B=AP+PB=1000米2、B【解析】【分析】根据题图所给信息,根据边或角分析即可【详解】解:第一个图形中有两边相等,故第一个三角形是等腰三角形, 第二个图形中的三个角分别为50,35,95,故第二个三角形不是等腰三角形;第三个图形中的三个角分别为100,40,40,故第三个三角形是等腰三角形;第四个图形中的三个角分别为

8、90,45,45,故第四个三角形是等腰三角形;故答案为:B【考点】本题考查了等腰三角形的判定,掌握等腰三角形的判定是解题的关键3、B【解析】【分析】由垂直平分线的判定定理,即可得到答案【详解】解:根据题意,CD=CE,OE=OD,AO是线段DE的垂直平分线,AOB=90;则小意同学判断的依据是:线段中垂线上的点到线段两段距离相等;故选:B【考点】本题考查了垂直平分线的判定定理,解题的关键是熟练掌握垂直平分线的判定定理进行判断4、B【解析】【分析】翻折后的图形与翻折前的图形是全等图形,利用折叠的性质,正方形的性质,以及图形的对称性特点解题【详解】解:由图形的对称性可知:AB=AH,CD=DH,正

9、方形ABCD,AB=CD=AD,AH=DH=AD故选B【考点】本题主要考查翻折图形的性质,解决本题的关键是利用图形的对称性把所求的线段进行转移5、B【解析】【分析】结合轴对称图形的概念进行求解即可【详解】解:根据轴对称图形的概念可知:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确故选:B【考点】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合6、D【解析】【分析】根据轴对称图形的定义(在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形)进行判断即可得【详解】解:根据轴对称

10、图形的定义判断可得:只有D选项符合题意,故选:D【考点】题目主要考查轴对称图形的判断,理解轴对称图形的定义是解题关键7、D【解析】【分析】证得CAFGAB(SAS),从而推得正确;利用CAFGAB及三角形内角和与对顶角,可判断正确;证明AFMBAD(AAS),得出FM=AD,FAM=ABD,则正确,同理ANGCDA,得出NG=AD,则FM=NG,证明FMEGNE(AAS)可得出结论正确【详解】解:BAF=CAG=90,BAF+BAC=CAG+BAC,即CAF=GAB,又AB=AF=AC=AG,CAFGAB(SAS),BG=CF,故正确;FACBAG,FCA=BGA,又BC与AG所交的对顶角相等

11、,BG与FC所交角等于GAC,即等于90,BGCF,故正确;过点F作FMAE于点M,过点G作GNAE交AE的延长线于点N,FMA=FAB=ADB=90,FAM+BAD=90,FAM+AFM=90,BAD=AFM,又AF=AB,AFMBAD(AAS),FM=AD,FAM=ABD,故正确,同理ANGCDA,NG=AD,FM=NG,FMAE,NGAE,FME=ENG=90,AEF=NEG,FMEGNE(AAS)EF=EG故正确故选:D【考点】本题综合考查了全等三角形的判定与性质及等腰三角形的三线合一性质与互余、对顶角,三角形内角和等几何基础知识熟练掌握全等三角形的判定与性质是解题的关键8、A【解析】

12、【分析】根据等边三角形的判定方法即可解答.【详解】选项A,一个角的平分线是对边的中线或高线,能判定该三角形是等腰三角形,不能判断该三角形是等边三角形;选项B,两边相等,有一个内角是60,根据有一个角为60的等腰三角形是等边三角形,即可判定该三角形是等边三角形;选项C,两角相等,且两角的和是第三个角的2倍 ,根据三角形的内角和定理可求得该三角形的三个内角的度数都为60,即可判定该三角形是等边三角形;选项D,三个内角都相等,根据三角形的内角和定理可求得该三角形的三个内角的度数都为60,即可判定该三角形是等边三角形.故选A.【考点】本题考查了等边三角形的判定,熟练运用等边三角形的判定方法是解决问题的

13、关键.9、C【解析】【分析】根据线段垂直平分线性质得出,求出AC和的长,即可求出答案【详解】解:DE是AC的垂直平分线,的周长为13cm,的周长为,故选:C【考点】考查垂直平分线的性质,三角形周长问题,解题的关键是掌握垂直平分线的性质10、B【解析】【详解】解:PB+PC=BC,PA+PC=BC,PA=PB,根据线段垂直平分线定理的逆定理可得,点P在线段AB的垂直平分线上,故可判断B选项正确故选B二、填空题1、6【解析】【分析】在AD上截取AF=AE,连接BF,易得ABFACE,根据全等三角形的性质可得BFA=E,CE=BF,则有D=DFB,然后根据等腰三角形的性质可求解【详解】解:在AD上截

14、取AF=AE,连接BF,如图所示:AB=AC,FAB=EAC,BF=EC,BFA=E,D+E=180,BFA+DFB=180,DFB=D,BF=BD, BD=6,2、70【解析】【详解】解:由折叠的性质得到BDE=BDE,ADF=80,ADF+BDE+BDE=180,BDE=BDE=50,ABC为等边三角形,B=60,则BED=180-(50+60)=70DEG=BED =70,故答案为:703、10【解析】【分析】过点E作,垂足为F,延长AD到H,交BC于点H,过点D作,垂足为G,由直角三角形中所对的直角边是斜边的一半可知,然后由等腰三角形三线合一可知,然后再证明四边形DGFH是矩形,从而得

15、到,最后根据计算即可.【详解】解;过点E作,垂足为F,延长AD到H,交BC于点H,过点D作,垂足为G,又,AD平分,且,四边形DGFH是矩形.故答案为:10.【考点】本题主要考查的是等腰三角形的性质,含直角三角形的性质以及矩形的性质和判定,根据题意构造含的直角三角形是解题的关键.4、4【解析】【分析】根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案.【详解】点与点关于轴对称,则a+b的值是:,故答案为【考点】本题考查了关于x轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解此类问题的关键.5、4【解析】【分析】过点C作CEAB于点E,交BD于点M,过点

16、M作MNBC,则CE即为CM+MN的最小值,再根据BC=8,ABC=30,由直角三角形的性质即可求出CE的长【详解】解:过点C作CEAB于点E,交BD于点M,过点M作MNBC,BD平分ABC,ME=MN,MN+CM=EM+CM=CE,则CE即为CM+MN的最小值,在Rt中, BC=8,ABC=30,CM+MN的最小值是4故答案为:4【考点】本题考查的是轴对称-最短路线问题,根据题意作出辅助线,构造出直角三角形,含有30的直角三角形的性质求解是解答此题的关键三、解答题1、(1)A(1,3),B(-3,2),见解析;(2)(-3,-2),【解析】【分析】(1)根据平面直角坐标系直接写出点A,点B坐

17、标,利用关于x轴对称的点的坐标特征写出点A1、B1、C1的坐标,然后描点即可得到A1B1C1;(2)写出B1的坐标,运用勾股定理可求出CB1的长【详解】解:(1)A(1,3),B(-3,2),如图所示;(2)(-3,-2),的长为故答案为:【考点】本题主要考查作图轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点2、(1)证明见解析;(2)ACD、ABE、BCE、BHG【解析】【详解】分析:(1)由ACBD、BFCD知ADE+DAE=CGF+GCF,根据BGE=ADE=CGF得出DAE=GCF即可得;(2)设DE=a,先得出AE=2DE=2a、EG=DE=a、AH=H

18、E=a、CE=AE=2a,据此知SADC=2a2=2SADE,证ADEBGE得BE=AE=2a,再分别求出SABE、SACE、SBHG,从而得出答案详解:(1)BGE=ADE,BGE=CGF,ADE=CGF,ACBD、BFCD,ADE+DAE=CGF+GCF,DAE=GCF,AD=CD;(2)设DE=a,则AE=2DE=2a,EG=DE=a,SADE=AEDE=2aa=a2,BH是ABE的中线,AH=HE=a,AD=CD、ACBD,CE=AE=2a,则SADC=ACDE=(2a+2a)a=2a2=2SADE;在ADE和BGE中,ADEBGE(ASA),BE=AE=2a,SABE=AEBE=(2

19、a)2a=2a2,SACE=CEBE=(2a)2a=2a2,SBHG=HGBE=(a+a)2a=2a2,综上,面积等于ADE面积的2倍的三角形有ACD、ABE、BCE、BHG点睛:本题主要考查全等三角形的判定与性质,解题的关键是掌握等腰三角形的判定与性质及全等三角形的判定与性质3、证明见解析【解析】【分析】根据线段垂直平分线的性质得到BE=DE,根据等腰三角形的性质得到BEG=DEG,根据平行线的性质得到BEG=BAC,DEG=AFE,等量代换得到EAF=AFE,根据得到结论【详解】EG垂直平分BC,BE=DE,BEG=DEG,ACB=90,EGAC,BEG=BAC,DEG=AFE,EAF=A

20、FE,AE=EF,点E在AF的垂直平分线上【考点】此题考查线段的垂直平分线的性质,平行线的性质,熟练掌握线段垂直平分线的性质是解题的关键4、(1)证明见解析;(2)BOC=100【解析】【分析】(1)首先根据等腰三角形的性质得到ABC=ACB,然后利用高线的定义得到ECB=DBC,从而得证;(2)首先求出A的度数,进而求出BOC的度数【详解】解:(1)证明:AB=AC,ABC=ACB,BD、CE是ABC的两条高线,DBC=ECB,OB=OC;(2)ABC=50,AB=AC,A=180250=80,BOC=360-18080=100【考点】考点:等腰三角形的性质5、(1)见详解;(2)见详解;(3) 【解析】【分析】(1)根据题意,可以画出所求的ABC;(2)根据最短路线的作法,可以画出点P,使得PA+PC最小;(3)利用分割法求面积即可【详解】解:(1)如图,ABC即为所求;(2)如图,连接AC,交MN于点P,则P即为所求;(3)【考点】本题考查作图-轴对称变换,三角形的面积,轴对称最短问题等知识,解题关键是熟练掌握基本知识,属于中考常考题型

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1