收藏 分享(赏)

基础强化人教版九年级数学上册第二十四章圆难点解析试卷(详解版).docx

上传人:a**** 文档编号:958479 上传时间:2025-12-19 格式:DOCX 页数:26 大小:812.96KB
下载 相关 举报
基础强化人教版九年级数学上册第二十四章圆难点解析试卷(详解版).docx_第1页
第1页 / 共26页
基础强化人教版九年级数学上册第二十四章圆难点解析试卷(详解版).docx_第2页
第2页 / 共26页
基础强化人教版九年级数学上册第二十四章圆难点解析试卷(详解版).docx_第3页
第3页 / 共26页
基础强化人教版九年级数学上册第二十四章圆难点解析试卷(详解版).docx_第4页
第4页 / 共26页
基础强化人教版九年级数学上册第二十四章圆难点解析试卷(详解版).docx_第5页
第5页 / 共26页
基础强化人教版九年级数学上册第二十四章圆难点解析试卷(详解版).docx_第6页
第6页 / 共26页
基础强化人教版九年级数学上册第二十四章圆难点解析试卷(详解版).docx_第7页
第7页 / 共26页
基础强化人教版九年级数学上册第二十四章圆难点解析试卷(详解版).docx_第8页
第8页 / 共26页
基础强化人教版九年级数学上册第二十四章圆难点解析试卷(详解版).docx_第9页
第9页 / 共26页
基础强化人教版九年级数学上册第二十四章圆难点解析试卷(详解版).docx_第10页
第10页 / 共26页
基础强化人教版九年级数学上册第二十四章圆难点解析试卷(详解版).docx_第11页
第11页 / 共26页
基础强化人教版九年级数学上册第二十四章圆难点解析试卷(详解版).docx_第12页
第12页 / 共26页
基础强化人教版九年级数学上册第二十四章圆难点解析试卷(详解版).docx_第13页
第13页 / 共26页
基础强化人教版九年级数学上册第二十四章圆难点解析试卷(详解版).docx_第14页
第14页 / 共26页
基础强化人教版九年级数学上册第二十四章圆难点解析试卷(详解版).docx_第15页
第15页 / 共26页
基础强化人教版九年级数学上册第二十四章圆难点解析试卷(详解版).docx_第16页
第16页 / 共26页
基础强化人教版九年级数学上册第二十四章圆难点解析试卷(详解版).docx_第17页
第17页 / 共26页
基础强化人教版九年级数学上册第二十四章圆难点解析试卷(详解版).docx_第18页
第18页 / 共26页
基础强化人教版九年级数学上册第二十四章圆难点解析试卷(详解版).docx_第19页
第19页 / 共26页
基础强化人教版九年级数学上册第二十四章圆难点解析试卷(详解版).docx_第20页
第20页 / 共26页
基础强化人教版九年级数学上册第二十四章圆难点解析试卷(详解版).docx_第21页
第21页 / 共26页
基础强化人教版九年级数学上册第二十四章圆难点解析试卷(详解版).docx_第22页
第22页 / 共26页
基础强化人教版九年级数学上册第二十四章圆难点解析试卷(详解版).docx_第23页
第23页 / 共26页
基础强化人教版九年级数学上册第二十四章圆难点解析试卷(详解版).docx_第24页
第24页 / 共26页
基础强化人教版九年级数学上册第二十四章圆难点解析试卷(详解版).docx_第25页
第25页 / 共26页
基础强化人教版九年级数学上册第二十四章圆难点解析试卷(详解版).docx_第26页
第26页 / 共26页
亲,该文档总共26页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十四章圆难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在四边形ABCD中,则AB()A4B5CD2、如图,螺母的外围可以看作是正六边形ABCDEF,已知这个正六边形

2、的半径是2,则它的周长是()A6B12C12D243、已知中,点P为边AB的中点,以点C为圆心,长度r为半径画圆,使得点A,P在C内,点B在C外,则半径r的取值范围是()ABCD4、如图,在ABC中,ACB90,ACBC,AB4cm,CD是中线,点E、F同时从点D出发,以相同的速度分别沿DC、DB方向移动,当点E到达点C时,运动停止,直线AE分别与CF、BC相交于G、H,则在点E、F移动过程中,点G移动路线的长度为()A2BC2D5、如图,AB是O的直径,BC与O相切于点B,AC交O于点D,若ACB=50,则BOD等于()A40B50C60D806、如图,在中,以点为圆心,为半径的圆与相交于点

3、,则的长为()A2BC3D7、下列说法:(1)长度相等的弧是等弧;(2)弦不包括直径;(3)劣弧一定比优弧短;(4)直径是圆中最长的弦其中正确的有()A1个B2个C3个D4个8、如图,是的直径,点C为圆上一点,的平分线交于点D,则的直径为()ABC1D29、已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()ABCD10、如图,点A,B的坐标分别为,点C为坐标平面内一点,点M为线段的中点,连接,则的最大值为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,正方形ABCD的边长为2a,E为BC边的中点, 的圆心分别在边AB、CD上,这两段圆弧在

4、正方形内交于点F,则E、F间的距离为 2、圆锥的底面半径为3,侧面积为,则这个圆锥的母线长为_3、如图,矩形ABCD的对角线交于点O,以点A为圆心,AB的长为半径画弧,刚好过点O,以点D为圆心,DO的长为半径画弧,交AD于点E,若AC2,则图中阴影部分的面积为_(结果保留)4、如图,正五边形ABCDE和正三角形AMN都是O的内接多边形,则BOM_.5、如图,A、D是O上的两点,BC是直径,若D32,则OAC_度三、解答题(5小题,每小题10分,共计50分)1、已知的半径是弦求圆心到的距离;弦两端在圆上滑动,且保持,的中点在运动过程中构成什么图形,请说明理由2、已知:求作:,使它经过点和点,并且

5、圆心在的平分线上,3、如图,在四边形中,.是四边形内一点,且.求证:(1);(2)四边形是菱形.4、如图,一根长的绳子,一端拴在柱子上,另一端拴着一只羊(羊只能在草地上活动),请画出羊的活动区域5、已知P为O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有点A、B(不与P、Q重合),连接AP、BP,若APQ=BPQ(1)如图1,当APQ=45,AP=1,BP=2时,求O的半径。(2)如图2,连接AB,交PQ于点M,点N在线段PM上(不与P、M重合),连接ON、OP,设NOP=,OPN=,若AB平行于ON,探究与的数量关系。-参考答案-一、单选题1、D【解析】【分析】延长AD,BC

6、交于点E,则E=30,先在RtCDE中,求得CE的长,然后在RtABE中,根据E的正切函数求得AB的长【详解】如图,延长AD,BC交于点E,则E=30,在RtCDE中,CE=2CD=6(30锐角所对直角边等于斜边的一半),BE=BC+CE=8,在RtABE中,AB=BEtanE=8=.故选D.【考点】本题考查了解直角三角形,特殊角的三角函数值,解此题的关键在于构造一个直角三角形,然后利用锐角三角函数进行解答.2、C【解析】【分析】如图,先求解正六边形的中心角,再证明是等边三角形,从而可得答案【详解】解:如图,为正六边形的中心,为正六边形的半径,为等边三角形,正六边形ABCDEF的周长为故选:【

7、考点】本题考查的是正多边形与圆,正多边形的半径,中心角,周长,掌握以上知识是解题的关键3、D【解析】【分析】根据勾股定理,得AB=5,由P为AB的中点,得CP=,要使点A,P在C内,r3,r4,从而确定r的取值范围.【详解】点A在C内,r3,点B在C外,r4,故选:D.【考点】本题考查了点和圆的位置关系,利用数形结合思想是解题的关键.4、D【解析】【分析】【详解】解:如图,CACB,ACB90,ADDB,CDAB,ADECDF90,CDADDB,在ADE和CDF中,ADECDF(SAS),DAEDCF,AEDCEG,ADECGE90,A、C、G、D四点共圆,点G的运动轨迹为弧CD,AB4,AB

8、AC,AC2,OAOC,DADC,OAOC,DOAC,DOC90,点G的运动轨迹的长为故选:D5、D【解析】【分析】根据切线的性质得到ABC=90,根据直角三角形的性质求出A,根据圆周角定理计算即可【详解】BC是O的切线,ABC=90,A=90-ACB=40,由圆周角定理得,BOD=2A=80,故选D【考点】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键6、C【解析】【分析】过C点作CHAB于H点,在ABC、CBH中由分别求出BC和BH,再由垂径定理求出BD,进而AD=AB-BD即可求解【详解】解:过C点作CHAB于H点,如下图所示:ACB=90,A=30,A

9、BC、CBH均为30、60、90直角三角形,其三边之比为,RtABC中,RtBCH中,由垂径定理可知:,故选:C【考点】本题考查了直角三角形30角所对直角边等于斜边的一半,垂径定理等知识点,熟练掌握垂径定理是解决本题的关键7、A【解析】【分析】根据等弧的定义、弦的定义、弧的定义、分别判断后即可确定正确的选项【详解】解:(1)长度相等的弧不一定是等弧,弧的度数必须相同,故错误;(2)直径是圆中最长的弦,故(2)错误,(4)正确;(3)同圆或等圆中劣弧一定比优弧短,故错误;正确的只有一个,故选:A【考点】本题考查了圆的有关定义,能够了解圆的有关知识是解答本题的关键,难度不大8、B【解析】【分析】过

10、D作DEAB垂足为E,先利用圆周角的性质和角平分线的性质得到DE=DC=1,再说明RtDEBRtDCB得到BE=BC,然后再利用勾股定理求得AE,设BE=BC=x,AB=AE+BE=x+,最后根据勾股定理列式求出x,进而求得AB【详解】解:如图:过D作DEAB,垂足为EAB是直径ACB=90ABC的角平分线BDDE=DC=1在RtDEB和RtDCB中DE=DC、BD=BDRtDEBRtDCB(HL)BE=BC在RtADE中,AD=AC-DC=3-1=2AE=设BE=BC=x,AB=AE+BE=x+在RtABC中,AB2=AC2+BC2则(x+)2=32+x2,解得x=AB=+=2故填:2【考点

11、】本题主要考查了圆周角定理、角平分线的性质以及勾股定理等知识点,灵活应用相关知识成为解答本题的关键9、C【解析】【分析】先依据题意画出图形,如图(见解析),过点A作于D,利用勾股定理可求出AD的长,再根据三角形内切圆的性质、三角形的面积公式即可得出答案【详解】解:如图,内切圆O的半径为,切点为,则过点A作于D,设,则由勾股定理得:则,即解得,即又即解得则内切圆的半径为故选:C【考点】本题考查了三角形内切圆的性质、勾股定理等知识点,读懂题意,正确画出图形,并求出AD的长是解题关键10、B【解析】【分析】如图所示,取AB的中点N,连接ON,MN,根据三角形的三边关系可知OMON+MN,则当ON与M

12、N共线时,OM= ON+MN最大,再根据等腰直角三角形的性质以及三角形的中位线即可解答【详解】解:如图所示,取AB的中点N,连接ON,MN,三角形的三边关系可知OMON+MN,则当ON与MN共线时,OM= ON+MN最大,则ABO为等腰直角三角形,AB=,N为AB的中点,ON=,又M为AC的中点,MN为ABC的中位线,BC=1,则MN=,OM=ON+MN=,OM的最大值为故答案选:B【考点】本题考查了等腰直角三角形的性质以及三角形中位线的性质,解题的关键是确定当ON与MN共线时,OM= ON+MN最大二、填空题1、a【解析】【分析】作DE的中垂线交CD于G,则G为的圆心,H为的圆心,连接EF,

13、GH,交于点O,连接GF,FH,HE,EG,依据勾股定理可得GE=FG=a,根据四边形EGFH是菱形,四边形BCGH是矩形,即可得到RtOEG中,OE=a,即可得到EF=a【详解】如图,作DE的中垂线交CD于G,则G为的圆心,同理可得,H为的圆心,连接EF,GH,交于点O,连接GF,FH,HE,EG,设GE=GD=x,则CG=2a-x,CE=a,RtCEG中,(2a-x)2+a2=x2,解得x=a,GE=FG=a,同理可得,EH=FH=a,四边形EGFH是菱形,四边形BCGH是矩形,GO=BC=a,RtOEG中,OE=,EF=a,故答案为a【考点】本题主要考查了正方形的性质以及相交两圆的性质,

14、相交两圆的连心线(经过两个圆心的直线),垂直平分两圆的公共弦注意:在习题中常常通过公共弦在两圆之间建立联系2、4【解析】【分析】根据圆锥的底面半径可以求出底面周长即为展开后的弧长,侧面积即为展开后扇形的面积,再根据扇形的面积公式求出扇形的半径即为圆锥的母线【详解】底面半径为3,底面周长=23=6圆锥的母线=故答案为:4【考点】本题考查圆锥与扇形的结合,关键在于理解圆锥周长是扇形弧长,圆锥母线是扇形半径3、【解析】【分析】由图可知,阴影部分的面积是扇形ABO和扇形DEO的面积之和,然后根据题目中的数据,可以求得AB、OA、DE的长,BAO和EDO的度数,从而可以解答本题【详解】解:四边形ABCD

15、是矩形,OAOCOBOD,ABAO,ABO是等边三角形,BAO60,EDO30,AC2,OAOD1,图中阴影部分的面积为:,故答案为:【考点】本题主要考查扇形面积、矩形的性质及等边三角形的性质与判定,熟练掌握扇形面积、矩形的性质及等边三角形的性质与判定是解题的关键4、48【解析】【分析】连接OA,分别求出正五边形ABCDE和正三角形AMN的中心角,结合图形计算即可【详解】连接OA,五边形ABCDE是正五边形,AOB=72,AMN是正三角形,AOM=120,BOM=AOM-AOB=48,故答案为48点睛:本题考查的是正多边形与圆的有关计算,掌握正多边形的中心角的计算公式是解题的关键5、58【解析

16、】【分析】根据D的度数,可以得到ABC的度数,然后根据BC是直径,从而可以得到BAC的度数,然后可以得到OCA的度数,再根据OA=OC,从而可以得到OAC的度数【详解】解:D=32,D=ABCABC=32BC是直径BAC=90BCA=90-ABC=90-32=58OCA=58OA=OCOAC=OCAOAC=58故答案为58【考点】本题考查了圆周角定理,圆心角、弧、弦的关系解题的关键是明确题意,利用数形结合的思想解答三、解答题1、(1)3;(2)在运动过程中,点运动的轨迹是以为圆心,为半径的圆【解析】【分析】(1)利用垂径定理,然后根据勾股定理即可求得弦心距OD的长;(2)根据圆的定义即可确定【

17、详解】解:连接,作于就是圆心到弦的距离在中,是弦的中点在中,,圆心到弦的距离为由知:是弦的中点中点在运动过程中始终保持据圆的定义,在运动过程中,点运动的轨迹是以为圆心,为半径的圆【考点】考查垂径定理,作出辅助线,构造直角三角形是解题的关键.2、见详解【解析】【分析】要作圆,即需要先确定其圆心,先作A的角平分线,再作线段BC的垂直平分线相交于点O,即O点为圆心【详解】解:根据题意可知,先作A的角平分线,再作线段BC的垂直平分线相交于O,即以O点为圆心,OB为半径,作圆O,如下图所示:【考点】此题主要考查了学生对确定圆心的作法,要求学生熟练掌握应用3、(1)证明见解析;(2)证明见解析.【解析】【

18、详解】分析:(1)先证点、共圆,从而得到,又,即可得出结论;(2) 连接,证得到又由于,,结合可得BO=BC, 从而四边形是菱形.详解:(1).点、在以点为圆心,为半径的圆上.又,.(2)证明:如图,连接.,.,.,.又.,.又,四边形是菱形.点睛:本题考查圆周角定理、全等三角形的判定和性质、菱形的判定等知识,解题的关键是灵活应用圆周角定理,学会添加常用辅助线,属于中考常考题型4、见解析【解析】【分析】根据题意画出两个扇形即可得到羊的活动区域【详解】解:如图,以点O为圆心,5m长的绳子为半径画弧交草地左边界于点A,交OD的延长线于点B,再以D为圆心,DB长为半径画弧交草地的右边界于点C,则扇形

19、AOB和扇形BDC部分即为羊的活动区域【考点】本题考查了作图应用与设计作图、扇形面积,根据题意画扇形是解决本题的关键5、(1);(2)+2=90,见解析【解析】【分析】(1)连接AB,由已知得到APB=APQ+BPQ=90,根据圆周角定理证得AB是O的直径,然后根据勾股定理求得直径,即可求得半径;(2)连接OA、OB、OQ,由证得APQ=BPQ,即可证得OQON,然后根据三角形内角和定理证得2OPN+PON+NOQ=180,即可证得+2=90【详解】(1)连接AB,APQ=BPQ=45,APB=APQ+BPQ=90,AB是O的直径,AB=,O的半径为;(2)+2=90,证明:连接OA、OB、OQ,APQ=BPQ, ,AOQ=BOQ,OA=OB,OQAB,ONAB,NOOQ,NOQ=90,OP=OQ,OPN=OQP,OPN+OQP+PON+NOQ=180,2OPN+PON+NOQ=180,NOP+2OPN=90,NOP=,OPN=,+2=90【解答】解:【点评】本题考查了圆周角定理,垂径定理,熟练掌握性质定理是解题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1