ImageVerifierCode 换一换
格式:DOCX , 页数:25 ,大小:644.37KB ,
资源ID:958477      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-958477-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(基础强化人教版九年级数学上册第二十四章圆达标测试试卷(含答案详解版).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

基础强化人教版九年级数学上册第二十四章圆达标测试试卷(含答案详解版).docx

1、人教版九年级数学上册第二十四章圆达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB是的直径,点B是弧CD的中点,AB交弦CD于E,且,则()A2B3C4D52、已知O的半径为4,点O到直线

2、m的距离为d,若直线m与O公共点的个数为2个,则d可取()A5B4.5C4D03、如图,在中,以点为圆心,为半径的圆与所在直线的位置关系是()A相交B相离C相切D无法判断4、若某圆锥的侧面展开图是一个半圆,已知圆锥的底面半径为r,那么圆锥的高为()ABCD5、如图,AB是O的直径,C,D是O上位于AB异侧的两点下列四个角中,一定与ACD互余的角是()AADCBABDCBACDBAD6、如图,点A,B的坐标分别为,点C为坐标平面内一点,点M为线段的中点,连接,则的最大值为( )ABCD7、如图,O的半径为5,AB为弦,点C为的中点,若ABC=30,则弦AB的长为()AB5CD58、如图,是的直径

3、,点C为圆上一点,的平分线交于点D,则的直径为()ABC1D29、如图所示,MN为O的弦,N=52,则MON的度数为()A38B52C76D10410、如图所示,矩形纸片中,把它分割成正方形纸片和矩形纸片后,分别裁出扇形和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则的长为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知的半径为,直线与相交,则圆心到直线距离的取值范围是_2、如图,四边形ABCD内接于O,A=125,则C的度数为_3、如图,四边形是正方形,曲线是由一段段90度的弧组成的其中:的圆心为点A,半径为;的圆心为点B,半径为;的圆心为点C,半径

4、为;的圆心为点D,半径为;的圆心依次按点A,B,C,D循环若正方形的边长为1,则的长是_4、如图,边长相等的正五边形和正六边形拼接在一起,则ABC的度数为_5、如图,PA、PB切O于A、B两点,点C在O上,且PC,则AOB_三、解答题(5小题,每小题10分,共计50分)1、如图,在中, =45,以为直径的与边交于点(1)判断直线与的位置关系,并说明理由;(2)若,求图中阴影部分的面积2、如图,比较与的长度,并证明你的结论3、如图,已知MAN,按下列要求补全图形(要求利用没有刻度的直尺和圆规作图,不写作法,保留作图痕迹)在射线AN上取点O,以点O为圆心,以OA为半径作O分别交AM、AN于点C、B

5、;在MAN的内部作射线AD交O于点D,使射线AD上的各点到MAN的两边距离相等,请根据所作图形解答下列问题;(1)连接OD,则OD与AM的位置关系是 ,理论依据是 ;(2)若点E在射线AM上,且DEAM于点E,请判断直线DE与O的位置关系;(3)已知O的直径AB6cm,当弧BD的长度为 cm时,四边形OACD为菱形4、如图,PA、PB分别切O于A、B,连接PO与O相交于C,连接AC、BC,求证:AC=BC 5、如图,在RtABC中,C90,BD平分ABC,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E(1)求证:AC是O的切线;(2)若OB2,CD,求图中阴影部分的面积(结果

6、保留)-参考答案-一、单选题1、C【解析】【分析】是的直径,点是弧的中点,从而可知,然后利用勾股定理即可求出的长度【详解】解:设半径为,连接,是的直径,点是弧的中点,由垂径定理可知:,且点是的中点,由勾股定理可知:,由勾股定理可知:,解得:,故选:C【考点】本题考查垂径定理,解题的关键是正确理解垂径定理以及勾股定理,本题属于中等题型2、D【解析】【分析】根据直线和圆的位置关系判断方法,可得结论【详解】直线m与O公共点的个数为2个直线与圆相交d半径4故选D【考点】本题考查了直线与圆的位置关系,掌握直线和圆的位置关系判断方法:设O的半径为r,圆心O到直线l的距离为d直线l和O相交dr直线l和O相切

7、dr,直线l和O相离dr3、A【解析】【分析】过点C作CDAB于点D,由题意易得AB=5,然后可得,进而根据直线与圆的位置关系可求解【详解】解:过点C作CDAB于点D,如图所示:,根据等积法可得,以点为圆心,为半径的圆,该圆的半径为,圆与AB所在的直线的位置关系为相交,故选A【考点】本题主要考查直线与圆的位置关系,熟练掌握直线与圆的位置关系是解题的关键4、C【解析】【分析】设圆锥母线长为R,由题意易得圆锥的母线长为,然后根据勾股定理可求解【详解】解:设圆锥母线长为R,由题意得:圆锥的侧面展开图是一个半圆,已知圆锥的底面半径为r,根据圆锥侧面展开图的弧长和圆锥底面圆的周长相等可得:,圆锥的高为;

8、故选C【考点】本题主要考查圆锥侧面展开图及弧长计算公式,熟练掌握圆锥的特征及弧长计算公式是解题的关键5、D【解析】【分析】由圆周角定理得出ACBACD+BCD90,BCDBAD,得出ACD+BAD90,即可得出答案.【详解】解:连接BC,如图所示:AB是O的直径,ACBACD+BCD90,BCDBAD,ACD+BAD90,故选:D.【考点】此题考查了圆周角定理:同弧所对的圆周角相等,直径所对的圆周角是直角,正确掌握圆周角定理是解题的关键.6、B【解析】【分析】如图所示,取AB的中点N,连接ON,MN,根据三角形的三边关系可知OMON+MN,则当ON与MN共线时,OM= ON+MN最大,再根据等

9、腰直角三角形的性质以及三角形的中位线即可解答【详解】解:如图所示,取AB的中点N,连接ON,MN,三角形的三边关系可知OMON+MN,则当ON与MN共线时,OM= ON+MN最大,则ABO为等腰直角三角形,AB=,N为AB的中点,ON=,又M为AC的中点,MN为ABC的中位线,BC=1,则MN=,OM=ON+MN=,OM的最大值为故答案选:B【考点】本题考查了等腰直角三角形的性质以及三角形中位线的性质,解题的关键是确定当ON与MN共线时,OM= ON+MN最大7、D【解析】【分析】连接OC、OA,利用圆周角定理得出AOC=60,再利用垂径定理得出AB即可【详解】连接OC、OA,ABC=30,A

10、OC=60,AB为弦,点C为的中点,OCAB,在RtOAE中,AE=,AB=,故选D【考点】此题考查圆周角定理,关键是利用圆周角定理得出AOC=608、B【解析】【分析】过D作DEAB垂足为E,先利用圆周角的性质和角平分线的性质得到DE=DC=1,再说明RtDEBRtDCB得到BE=BC,然后再利用勾股定理求得AE,设BE=BC=x,AB=AE+BE=x+,最后根据勾股定理列式求出x,进而求得AB【详解】解:如图:过D作DEAB,垂足为EAB是直径ACB=90ABC的角平分线BDDE=DC=1在RtDEB和RtDCB中DE=DC、BD=BDRtDEBRtDCB(HL)BE=BC在RtADE中,

11、AD=AC-DC=3-1=2AE=设BE=BC=x,AB=AE+BE=x+在RtABC中,AB2=AC2+BC2则(x+)2=32+x2,解得x=AB=+=2故填:2【考点】本题主要考查了圆周角定理、角平分线的性质以及勾股定理等知识点,灵活应用相关知识成为解答本题的关键9、C【解析】【分析】根据半径相等得到OM=ON,则M=N=52,然后根据三角形内角和定理计算MON的度数【详解】OM=ON,M=N=52,MON=180-252=76故选C【考点】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等)10、B【解析】【分析】设AB=xcm,则DE=(6-x

12、)cm,根据扇形的弧长等于圆锥底面圆的周长列出方程,求解即可【详解】设,则DE=(6-x)cm,由题意,得,解得. 故选B【考点】本题考查了圆锥的计算,矩形的性质,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长二、填空题1、【解析】【分析】根据直线AB和圆相交,则圆心到直线的距离小于圆的半径即可得问题答案【详解】O的半径为5,直线AB与O相交,圆心到直线AB的距离小于圆的半径,即0d5;故答案为:0d5【考点】本题考查了直线与圆的位置关系;熟记直线和圆的位置关系与数量之间的联系是解决问题的关键同时注意圆心到直线的距离应

13、是非负数2、55#55度【解析】【分析】根据圆内接四边形的性质得出A+C=180,再求出答案即可【详解】解:四边形ABCD内接于O,A+C=180,A=125,C=180-125=55,故答案为:55【考点】本题考查了圆内接四边形的性质和圆周角定理,能熟记圆内接四边形的对角互补是解此题的关键3、【解析】【分析】曲线是由一段段90度的弧组成的,半径每次比前一段弧半径+1,到,再计算弧长【详解】解:由图可知,曲线是由一段段90度的弧组成的,半径每次比前一段弧半径+1,故的半径为,的弧长=故答案为:【考点】此题主要考查了弧长的计算,弧长的计算公式:,找到每段弧的半径变化规律是解题关键4、24【解析】

14、【分析】根据正五边形的内角和和正六边形的内角和公式求得正五边形的每个内角为108和正六边形的每个内角为120,然后根据周角的定义和等腰三角形性质可得结论【详解】解:由题意得:正六边形的每个内角都等于120,正五边形的每个内角都等于108BAC=360-120-108=132AB=ACACB=ABC=故答案是:【考点】考查了正多边形的内角与外角、等腰三角形的性质,熟练掌握正五边形的内角和正六边形的内角求法是解题的关键5、120【解析】【分析】根据圆周角定理得到CAOB,根据切线的性质得到PAOPBO90,进而得出P+AOB180,根据题意计算,得到答案【详解】解:由圆周角定理得:CAOB,PA、

15、PB切O于A、B两点,PAOPBO90,P+AOB180,PC,AOB+AOB180,AOB120,故答案为:120【考点】本题考查切线的性质以及圆周角定理,熟记由切线得垂直是解题的关键三、解答题1、 (1)证明见解析(2)【解析】【分析】(1)利用等腰三角形的性质与三角形的内角和定理证明 从而可得结论;(2)如图,记BC与的交点为M,连接OM,先证明 再利用阴影部分的面积等于三角形ABC的面积减去三角形BOM的面积,减去扇形AOM的面积即可(1)证明: =45, 即 在上,为的切线(2)如图,记BC与的交点为M,连接OM, , , , , , 【考点】本题考查的是等腰三角形的性质,切线的判定

16、,扇形面积的计算,掌握“切线的判定方法与割补法求解不规则图形面积的方法”是解本题的关键2、,见解析【解析】【分析】根据圆心角、弧、弦的关系,由AD=BC解得,继而得到【详解】解:,证明如下:ADBC,即【考点】本题考查圆心角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等3、(1)平行;内错角相等,两直线平行;(2)相切,理由见解析;(3)【解析】【分析】(1)根据角平分线的定义、圆的性质可得,根据内错角相等,两直线平行即可得证;(2)利用切线的定义即可判定;(3)根据菱形的性质、圆的半径相等可得是等边三角形,利用等边三角形的性

17、质可得,可得,利用弧长公式即可求解【详解】解:补全图形如下:;(1),根据作图可知AD平分MAN,(内错角相等,两直线平行);(2)相切,理由如下:DEAM,直线DE与O相切;(3)四边形OACD为菱形,是等边三角形, 【考点】本题考查尺规作图、切线的判定与性质、等边三角形的判定与性质、弧长公式等内容,掌握上述基本性质定理是解题的关键4、证明见解析【解析】【详解】分析:连接OA、OB,根据切线的性质得出OAP和OBP全等,从而得出APC=BPC,从而得出APC和BPC全等,从而得出答案详解:连结OA,OB. PA,PB分别切O于点A,B,PAPB,又OAOB,POPO, OAPOBP(SSS)

18、,APCBPC,又PCPC,APCBPC(SAS)ACBC. 点睛:本题主要考查的是切线的性质以及三角形全等的证明与性质,属于基础题型根据切线的性质得出PA=PB是解题的关键5、(1)见解析;(2)【解析】【分析】(1)欲证明AC是O的切线,只要证明ODAC即可(2)证明OBE是等边三角形即可解决问题【详解】(1)证明:连接OD,如图,BD为ABC平分线,12,OBOD,13,23,ODBC,C90,ODA90,ODAC,AC是O的切线(2)过O作OGBC,连接OE,则四边形ODCG为矩形,GCODOB2,OGCD,在RtOBG中,利用勾股定理得:BG1,BE2,则OBE是等边三角形,阴影部分面积为2【考点】本题考查切线的判定和性质,等边三角形的判定和性质,思想的面积公式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1