1、人教版九年级数学上册第二十五章概率初步难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、 “翻开华东师大版数学九年级上册,恰好翻到第60页”,这个事件是()A必然事件B随机事件C不可能亊件D确定事件
2、2、班长邀请,四位同学参加圆桌会议如图,班长坐在号座位,四位同学随机坐在四个座位,则,两位同学座位相邻的概率是()ABCD3、一个不透明的袋中装有8个黄球,个红球,个白球,每个球除颜色外都相同任意摸出一个球,是黄球的概率与不是黄球的概率相同,下列与的关系一定正确的是()ABCD4、把标号为1,2,3的三个小球放入一个不透明的口袋中,随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球的标号的和大于3的概率是()ABCD5、下列说法错误的是()A袋中装有一个红球和两个白球,它们除颜色外都相同,从中随机摸出一个球,记下颜色后放回,充分摇动后,再从中随机摸出一个球,两次摸到不同颜色的球的概率
3、是B甲、乙、丙三人玩“石头、剪刀、布”的游戏,游戏规则是如果甲、乙两人的手势相同,那么丙获胜,如果甲、乙两人的手势不同,按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定甲、乙的获胜者这个游戏规则对甲、乙、丙三人是公平的C连续抛两枚质地均匀的硬币,“两枚正面朝上”“两枚反面朝上”和“一枚正面朝上,一枚反面朝上”,这三种结果发生的概率是相同的D一个小组的八名同学通过依次抽签(卡片外观一样,抽到不放回)决定一名同学获得元旦奖品,先抽和后抽的同学获得奖品的概率是相同的,抽签的先后不影响公平6、下列事件中,是必然事件的是()A晓丽乘12路公交车去上学,到达公共汽车站时,12路公交车正在驶来B买一张电彩票
4、,座位号是偶数号C在同一年出生的13名学生中,至少有2人出生在同一个月D在标准大气压下,温度低于0时才融化7、一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A20B24C28D308、如图在三条横线和三条竖线组成的图形中,任选两条横线和两条竖线都可以图成一个矩形,从这些矩形中任选一个,则所选矩形含点A的概率是()ABCD9、下列说法正确的是()A“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件B“打开电视机,正在播放
5、乒乓球比赛”是必然事件C“面积相等的两个三角形全等”是不可能事件D投掷一枚质地均匀的硬币100次,正面朝上的次数一定是50次10、甲、乙是两个不透明的纸箱,甲中有三张标有数字,的卡片,乙中有三张标有数字,的卡片,卡片除所标数字外无其他差别,现制定一个游戏规则:从甲中任取一张卡片,将其数字记为,从乙中任取一张卡片,将其数字记为若,能使关于的一元二次方程有两个不相等的实数根,则甲获胜;否则乙获胜则乙获胜的概率为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某产品生产企业开展有奖促销活动,将每6件产品装成一箱,且使得每箱中都有2件能中奖若从其中一箱中随机抽取1件
6、产品,则能中奖的概率是_(用最简分数表示)2、从2、6、9三个数字中任选两个,用这两个数字分别作为十位数和个位数组成一个两位数,在所有得到的两位数中随机抽取一个两位数,这个两位数是4的倍数的概率是_3、从中任取一数作为,使抛物线的开口向上的概率为_4、贵阳市2021年中考物理实验操作技能测试中,要求学生两人一组合作进行,并随机抽签决定分组有甲、乙、丙、丁四位同学参加测试,则甲、乙两位同学分到同一组的概率是_5、某同学投掷一枚硬币,如果连续次都是正面朝上,则他第次抛掷硬币的结果是正面朝上的概率是_三、解答题(5小题,每小题10分,共计50分)1、一个不透明的盒子中有2枚黑棋,3枚白棋,这些棋除颜
7、色外无其它区别现将盒子中的棋摇匀,随机摸出一枚棋,不放回,再随机摸出一枚棋(1)请用列表法或画树状图法表示出所有可能的情况;(2)求摸出的2枚棋都是白棋的概率2、圆周率是无限不循环小数历史上,祖冲之、刘徽、韦达、欧拉等数学家都对有过深入的研究目前,超级计算机已计算出的小数部分超过31.4万亿位有学者发现,随着小数部分位数的增加,09这10个数字出现的频率趋于稳定,接近相同(1)从的小数部分随机取出一个数字,估计数字是6的概率为_;(2)某校进行校园文化建设,拟从以上4位科学家的画像中随机选用2幅,求其中有一幅是祖冲之的概率(用画树状图或列表方法求解)3、在“双减”和“双增”的政策下,某校七年级
8、开设了五门手工课,按照类别分别为:剪纸;沙画;雕刻;泥塑;插花,每个学生仅限选择一项,为了了解学生对每种手工课的喜爱程度,随机抽取了七年级部分学生进行调查,并将调查结果绘制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了_名学生;扇形统计图中_,类别所对应的扇形圆心角的度数是_度;(2)请根据以上信息直接补全条形统计图;(3)在学期结束时,从开设的五门手工课中各选出一名学生谈感悟,由于这五名同学采用随机抽签的方式确定顺序,请用树状图或列表的方式说明剪纸()和雕刻()两人排在前两位谈感受的概率4、2021年9月7日,湖南永州郡祁学校的一则视频引发热议,视频显示,为
9、教育中学生不要浪费粮食,该校高中部校长王立新站在垃圾桶边当众吃光学生剩饭剩菜这一举动在全国掀起了校园“光盘行动”某校为了让该校学生理解这次活动的重要性,校政教处在某天午餐后,随机调查部分同学就餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图(1)这次被调查的同学共有 名;(2)把条形统计图补充完整;(3)若政教处准备从九(2)班就餐光盘的2男1女三名学生中随机抽取两人进行菜品调研,问恰巧抽到1男1女的概率为多少?5、甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀
10、,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.-参考答案-一、单选题1、B【解析】【分析】“翻开华东师大版数学九年级上册,恰好翻到第60页”,这个事件显然是可能发生的,应为随机事件【详解】“翻开华东师大版数学九年级上册,恰好翻到第60页”,这个事件是可能发生,也可能不发生,所以是随机事件故选:B【考点】本题考查了必然事件、随机事件、不可能事件的概念,在一定条件下,一定会发生的事件叫做必然事件,可能发生也可能不发生的叫做随机事件,一定不会发生的叫做
11、不可能事件2、C【解析】【分析】采用树状图发,确定所有可能情况数和满足题意的情况数,最后运用概率公式解答即可.【详解】解:根据题意列树状图如下:由上表可知共有12中可能,满足题意的情况数为6种则,两位同学座位相邻的概率是 .故选C.【考点】本题主要考查了画树状图求概率,正确画出树状图成为解答本题的关键.3、C【解析】【分析】先根据概率公式得出:任意摸出一个球,是黄球的概率与不是黄球的概率(用含m、n的代数式表示),然后由这两个概率相同可得m与n的关系【详解】解:一个不透明的袋中装有8个黄球,m个红球,n个白球,任意摸出一个球,是黄球的概率为:,不是黄球的概率为:,是黄球的概率与不是黄球的概率相
12、同,m+n8故选:C【考点】此题考查了概率公式的应用,属于基础题型,解题时注意掌握概率=所求情况数与总情况数之比4、D【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号和大于3的情况,再利用概率公式即可求得答案【详解】解:根据题意,画树状图如下: 共有9种等可能结果,其中两次摸出的小球标号的和大于3的有6种,两次摸出的小球标号的和大于3的概率是,故选:D【考点】此题考查了树状图法与列表法求概率用到的知识点为:概率=所求情况数与总情况数之比5、C【解析】【分析】利用列表法或树状图法分别计算出所求的概率,即可得答案【详解】A.两次摸球所有可能出现的结果,用
13、表列举如下:有9种等可能的结果,两次摸球颜色不同有4种,两次摸球颜色不同的概率为故该选项正确;B.甲获胜的概率为,乙获胜的概率为,丙获胜的概率也为,所以这个游戏规则对三人是公平的故该选项正确;C.设正面朝上为A,反面朝上为B,画树状图如下:P(两枚正面朝上)(两枚反面朝上),P(枚正面朝上,一枚反面朝上)故该选项错误;D.等可能事件,每人抽签获奖的概率均为故该选项正确,故选C【考点】本题考查了概率的意义、游戏的公平性;概率=所求情况数与总情况数之比;熟练掌握概率公式是解题关键6、C【解析】【分析】根据必然事件就是一定发生的事件,即发生的概率是1的事件进行分析即可【详解】A.晓丽乘12路公交车去
14、上学,到达公共汽车站时,12路公交车正在驶来,属于随机事件,故A不符合题意;B.买一张电影票,座位号是偶数号,属于随机事件,故B不符合题意;C.在同一年出生的13名学生中,至少有2人出生在同一个月,属于必然事件,故C符合题意;D.在标准大气压下,温度低于0时冰熔化,属于不可能事件,故D不符合题意故选:C【考点】本题主要考查的是对必然事件的概念的理解,必然事件指在一定条件下一定发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件不可能事件是指一定不会发生的事件7、D【解析】【分析】直接由概率公式求解即可.【详解】根据题意得=30%,解得:n=30,所以这个不透明的盒子里大
15、约有30个除颜色外其他完全相同的小球故选:D【考点】本题考查由频率估计概率、简单的概率计算,熟知求概率公式是解答的关键.8、D【解析】【分析】根据题意两条横线和两条竖线都可以组成矩形个数,再得出含点A矩形个数,进而利用概率公式求出即可【详解】解:两条横线和两条竖线都可以组成一个矩形,则如图的三条横线和三条竖线组成可以9个矩形,其中含点A矩形4个,所选矩形含点A的概率是故选:D【考点】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题9、A【解析】【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件【详解】解:A、“抛掷一枚质地均匀的硬币,落地后正面朝上”是
16、随机事件,故此选项正确;B、“打开电视机,正在播放乒乓球比赛” 是随机事件,故此选项错误;C、“面积相等的两个三角形全等” 是随机事件,故此选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数不一定是50次,故此选项错误;故选:A【考点】本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件10、C【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,利用一元二次方程根的判别式,即可判定各种情况下根的情
17、况,然后利用概率公式求解即可求得乙获胜的概率.【详解】(1)关于的一元二次方程有两个不相等的实数根,=b2-4a0,画树状图如下:由图可知,共有种等可能的结果,分别是a=,b=1,则=-10;a=,b=2,则=20;a=,b=1,则=0;a=,b=3,则=80;a=,b=2,则=30;a=1,b=1,则=-30;a=1,b=2,则=0;其中能使乙获胜的有种结果数,乙获胜的概率为,故选C【考点】本题考查的是用树状图法求概率,树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验二、填空题1、【解析】【分析】根据题意计算中奖概率即可;【详解】解:每一箱都有6件产品,且每箱中
18、都有2件能中奖,P(从其中一箱中随机抽取1件产品中奖)=,故答案为:【考点】本题主要考查简单概率的计算,正确理解题意是解本题的关键2、【解析】【分析】画树状图,共有6种等可能的结果,在所有得到的两位数中随机抽取一个两位数,这个两位数是4的倍数的结果有2种,再由概率公式求解即可【详解】解:画树状图如图:共有6种等可能的结果,在所有得到的两位数中随机抽取一个两位数,这个两位数是4的倍数的结果有2种,在所有得到的两位数中随机抽取一个两位数,这个两位数是4的倍数的概率为=,故答案为:【考点】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完
19、成的事件,树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比3、【解析】【分析】使抛物线y=ax2+bx+c的开口向上的条件是a0,据此从所列5个数中找到符合此条件的结果,再利用概率公式求解可得【详解】解:在所列的5个数中任取一个数有5种等可能结果,其中使抛物线y=ax2+bx+c的开口向上的有3种结果,使抛物线y=ax2+bx+c的开口向上的概率为,故答案为:.【考点】本题考查概率公式的计算,根据题意正确列出概率公式是解题的关键4、【解析】【分析】画树状图,共有12种等可能的结果,甲、乙两位同学分到同一组的结果有2种,再由概率公式求解即可【详解】解:画树状图如
20、图:共有12种等可能的结果,甲、乙两位同学分到同一组的结果有4种,甲、乙两位同学分到同一组的概率为,故答案为:【考点】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件用到的知识点为:概率所求情况数与总情况数之比5、【解析】【分析】投掷一枚硬币,可能出现的两种情况:正面朝上或者正面朝下.每次出现的机会相同【详解】第5次掷硬币,出现正面朝上的机会和朝下的机会相同,都为.故答案为:.【考点】本题考查了概率公式,掌握概率等于所求情况数与总情况数之比是解题的关键三、解答题1、 (1)作图见解析(2)摸出的2枚棋都是白棋的概率为【解析】【分
21、析】(1)依据题意画树状图即可;(2)根据概率公式进行求解即可(1)解:树状图如图所示:(2)解:由图可知:不放回,摸两次棋子共有20种情况,摸出的2枚棋都是白棋共有6种情况,摸出的2枚棋都是白棋的概率为【考点】本题考查了画树状图法求概率,解题的关键在于画出正确的树状图2、(1);(2)见解析,【解析】【分析】(1)这个事件中有10种等可能性,其中是6的有一种可能性,根据概率公式计算即可;(2)画出树状图计算即可.【详解】(1)这个事件中有10种等可能性,其中是6的有一种可能性,数字是6的概率为,故答案为:;(2)解:画树状图如图所示:共有12种等可能的结果,其中有一幅是祖冲之的画像有6种情况
22、(其中有一幅是祖冲之)【考点】本题考查了概率公式计算,画树状图或列表法计算概率,熟练掌握概率计算公式,准确画出树状图或列表是解题的关键3、 (1)120,25,54(2)见解析(3)【解析】【分析】(1)用类别D的人数除以其所占的百分比可求调查人数,用类别C人数除以调查人数再乘以百分之百即可求得m,用360乘以A类所占的百分比即可;(2)先求出类别B的人数,然后再补全条形统计图即可;(3)先画树状图确定所有可能,再利用概率公式,即可求解(1)解:(1)本次共调查的学生数为:3630%=120m=30120100%=25%;类别所对应的扇形圆心角的度数为360=54故答案为:120,25,54(
23、2)解:类别B的人数为1205%=6则补全的条形统计图如下图:(3)解:根据题意,画树状图如下:由树状图可知,共有20种等可能的结果,其中,剪纸()和雕刻()两人排在前两位的结果有2种,分别为,(剪纸()和雕刻()两人排在前两位)即:剪纸()和雕刻()两人排在前两位的概率是【考点】本题主要考查了条形统计图、扇形统计图、运用画树状图求概率等知识点,正确读取统计图中的信息和画出树状图成为解答本题的关键4、 (1)100(2)见解析(3)【解析】【分析】(1)利用光盘的人数除以光盘的人数所占的百分比,即可求解;(2)求出剩少量的人数,即可求解;(3)根据题意,画出树状图,得到共有6种等可能结果,其中
24、抽到的两名学生恰为1男1女的情况有4种,再利用概率公式即可求解(1)解:这次被调查的同学共有4040%100(名),故答案为:100;(2)解:剩少量的人数是;10040251520(名),把条形统计图补充完整如下;(3)解:画树状图如图:共有6种等可能结果,其中抽到的两名学生恰为1男1女的情况有4种,抽到的两名学生恰为1男1女的概率为【考点】本题主要考查了扇形统计图和条形统计图,利用树状图或列表法求概率,明确题意,从统计图中获取准确信息是解题的关键5、(1).(2)不公平.【解析】【分析】(1)利用列表法得到所有可能出现的结果,根据概率公式计算即可;(2)分别求出甲、乙获胜的概率,比较即可【详解】(1)所有可能出现的结果如图:从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为:;(2)不公平,从表格可以看出,两人抽取数字和为2的倍数有5种,两人抽取数字和为5的倍数有3种,所以甲获胜的概率为:,乙获胜的概率为:.,甲获胜的概率大,游戏不公平
Copyright@ 2020-2024 m.ketangku.com网站版权所有