1、人教版九年级数学上册第二十五章概率初步同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、老师从甲、乙,丙、丁四位同学中任选一人去学校劳动基地浇水,选中甲同学的概率是()ABCD2、两名同学在一次用频
2、率估计概率的试验中统计了某一结果出现的频率,绘制出统计图如图所示,则符合这一结果的试验可能是()A抛一枚硬币,正面朝上的概率B掷一枚正六面体的骰子,出现点的概率C转动如图所示的转盘,转到数字为奇数的概率D从装有个红球和个蓝球的口袋中任取一个球恰好是蓝球的概率3、某轨道列车共有3节车厢,设乘客从任意一节车厢上车的机会均等,某天甲、乙两位乘客同时乘同一列轨道列车,则甲和乙从同一节车厢上车的概率是()ABCD4、在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个黑球且摸到黑球的概率为,那么口袋中球的总数为( )A12个B9个C6个D3个5、一个不透明的袋中装有8个黄球,个红
3、球,个白球,每个球除颜色外都相同任意摸出一个球,是黄球的概率与不是黄球的概率相同,下列与的关系一定正确的是()ABCD6、 “翻开华东师大版数学九年级上册,恰好翻到第60页”,这个事件是()A必然事件B随机事件C不可能亊件D确定事件7、一个布袋里装有2个红球,3个黑球,4个白球,它们除颜色外都相同,从中任意摸出1个球,则下事件中,发生的可能性最大的是()A摸出的是白球B摸出的是黑球C摸出的是红球D摸出的是绿球8、下列说法错误的是()A袋中装有一个红球和两个白球,它们除颜色外都相同,从中随机摸出一个球,记下颜色后放回,充分摇动后,再从中随机摸出一个球,两次摸到不同颜色的球的概率是B甲、乙、丙三人
4、玩“石头、剪刀、布”的游戏,游戏规则是如果甲、乙两人的手势相同,那么丙获胜,如果甲、乙两人的手势不同,按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定甲、乙的获胜者这个游戏规则对甲、乙、丙三人是公平的C连续抛两枚质地均匀的硬币,“两枚正面朝上”“两枚反面朝上”和“一枚正面朝上,一枚反面朝上”,这三种结果发生的概率是相同的D一个小组的八名同学通过依次抽签(卡片外观一样,抽到不放回)决定一名同学获得元旦奖品,先抽和后抽的同学获得奖品的概率是相同的,抽签的先后不影响公平9、在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4若随机摸出一个小球后不放回,再随机摸出一个小球,则两次取
5、出小球标号的和等于5的概率为()ABCD10、小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果任意选择一对有序整数(m,n),其中|m|1,|n|3,每一对这样的有序整数被选择的可能性是相等的,那么关于x的方程x2nxm0有两个相等实数根的概率是_2、一个小球在如图所示的地面上自由滚动,并随机地停留在某块方砖上,则小球停留在黑色区域的概率是_3、 (1)明天是晴天;(2)黑暗中从一串不同的钥匙中随意摸出一把,用它打开了门
6、;(3)某小组有13名同学,至少有2名同学的生日在同一个月;(4)在标准大气压下,温度低于0时冰融化,在这些事件中属于随机事件的有_;属于必然事件的有_(只填序号)4、对一批口罩进行抽检,统计合格口罩的只数,得到合格口罩的频率如下:抽取只数(只)50100150500100020001000050000合格频率0.820.830.820.830.840.840.840.84估计从该批次口罩中任抽一只口罩是合格品的概率为_5、在一个布袋中装有只有颜色不同的a个小球,其中红球的个数为2,随机摸出一个球记下颜色后再放回袋中,通过大量重复实验和发现,摸到红球的频率稳定于0.2,那么可以推算出a大约是_
7、.三、解答题(5小题,每小题10分,共计50分)1、某校为了解本校学生对课后服务情况的评价,随机抽取了部分学生进行调查,根据调查结果制成了如下不完整的统计图根据统计图:(1)求该校被调查的学生总数;(2)补全折线统计图;(3)根据调查结果,若要在全校学生中随机抽1名学生,估计该学生的评价为“非常满意”或“满意”的概率是多少?2、小明参加某个智力竞答节目,答对最后两道单选题就顺利通关第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项)(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是
8、 (2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率(3)从概率的角度分析,你建议小明在第几题使用“求助”(直接写出答案)3、2022年3月23日“天宫课堂”第二课开讲“太空教师”翟志刚、王亚平、叶光富在中国空间站为广大青少年又一次带来了精彩的太空科普课为了激发学生的航天兴趣,某校举行了太空科普知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分为如下5组(满分100分),A组:,B组:C组:,D组:,E组:,并绘制了如下不完整的统计图请结合统计图,解答下列问题:(1)本次调查一共随机抽取了 名学生的成绩,频数直方图中,所抽取学生成绩的中位数落在 组;(
9、2)补全学生成绩频数直方图:(3)若成绩在90分及以上为优秀,学校共有3000名学生,估计该校成绩优秀的学生有多少人?(4)学校将从获得满分的5名同学(其中有两名男生,三名女生)中随机抽取两名,参加周一国旗下的演讲,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率4、现有甲、乙两个不透明的袋子,甲袋里装有 2 个红球,1 个黄球;乙袋里装有 1 个红球, 1 个白球这些球除颜色外其余完全相同(1)从甲袋里随机摸出一个球,则摸到红球的概率为_(2)从甲袋里随机摸出一个球,再从乙袋里随机摸出一个球,请用画树状图或列表的方法,求摸出的两个球颜色相同的概率5、根据公安部交管局下发的通知,自
10、2020年6月1日起,将在全国开展“一带一盔”安全守护行动,其中就要求骑行摩托车、电动车需要佩戴头盔某日我市交警部门在某个十字路口共拦截了50名不带头盔的骑行者,根据年龄段和性别得到如下表的统计信息,根据表中信息回答下列问题:年龄(岁)人数男性占比450%60%2560%875%3100%(1)统计表中的值为_;(2)若要按照表格中各年龄段的人数来绘制扇形统计图,则年龄在“”部分所对应扇形的圆心角的度数为_;(3)在这50人中女性有_人;(4)若从年龄在“”的4人中随机抽取2人参加交通安全知识学习,请用列表或画树状图的方法,求恰好抽到2名男性的概率-参考答案-一、单选题1、B【解析】【分析】根
11、据随机事件概率大小的求法,找到全部情况的总数以及符合条件的情况,两者的比值就是其发生的概率的大小【详解】解:根据题意可得:从甲、乙,丙、丁四位同学中任选一人去学校劳动基地浇水,总数是4个人,符合情况的只有甲一个人,所以概率是P=,故选:B【考点】本题考查概率的求法与运用,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=2、D【解析】【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P0.33,计算四个选项的概率,约为0.33者即为正确答案【详解】解:A、掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;B、掷一枚正六面体的骰子,
12、出现点的概率为,故此选项不符合题意;C、转动如图所示的转盘,转到数字为奇数的概率为,故此选项不符合题意;D、从装有个红球和个蓝球的口袋中任取一个球恰好是蓝球的概率为,故此选项符合题意故选:D【考点】此题考查了利用频率估计概率,属于常见题型,明确大量反复试验下频率稳定值即概率是解答的关键3、C【解析】【分析】用树状图表示所有等可能的结果,再求得甲和乙从同一节车厢上车的概率【详解】解:将3节车厢分别记为1号车厢,2号车厢,3号车厢,用树状图表示所有等可能的结果,共有9种等可能的结果,其中,甲和乙从同一节车厢上车的有3可能,即甲和乙从同一节车厢上车的概率是,故选:C【考点】本题考查概率,涉及画树状图
13、求概率,是重要考点,难度较易,掌握相关知识是解题关键4、A【解析】【详解】解:口袋中装有4个黑球且摸到黑球的概率为,口袋中球的总数为:4=12(个)故选A5、C【解析】【分析】先根据概率公式得出:任意摸出一个球,是黄球的概率与不是黄球的概率(用含m、n的代数式表示),然后由这两个概率相同可得m与n的关系【详解】解:一个不透明的袋中装有8个黄球,m个红球,n个白球,任意摸出一个球,是黄球的概率为:,不是黄球的概率为:,是黄球的概率与不是黄球的概率相同,m+n8故选:C【考点】此题考查了概率公式的应用,属于基础题型,解题时注意掌握概率=所求情况数与总情况数之比6、B【解析】【分析】“翻开华东师大版
14、数学九年级上册,恰好翻到第60页”,这个事件显然是可能发生的,应为随机事件【详解】“翻开华东师大版数学九年级上册,恰好翻到第60页”,这个事件是可能发生,也可能不发生,所以是随机事件故选:B【考点】本题考查了必然事件、随机事件、不可能事件的概念,在一定条件下,一定会发生的事件叫做必然事件,可能发生也可能不发生的叫做随机事件,一定不会发生的叫做不可能事件7、A【解析】【分析】个数最多的就是可能性最大的【详解】解:因为白球最多,所以被摸到的可能性最大故选A【考点】本题主要考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相
15、等8、C【解析】【分析】利用列表法或树状图法分别计算出所求的概率,即可得答案【详解】A.两次摸球所有可能出现的结果,用表列举如下:有9种等可能的结果,两次摸球颜色不同有4种,两次摸球颜色不同的概率为故该选项正确;B.甲获胜的概率为,乙获胜的概率为,丙获胜的概率也为,所以这个游戏规则对三人是公平的故该选项正确;C.设正面朝上为A,反面朝上为B,画树状图如下:P(两枚正面朝上)(两枚反面朝上),P(枚正面朝上,一枚反面朝上)故该选项错误;D.等可能事件,每人抽签获奖的概率均为故该选项正确,故选C【考点】本题考查了概率的意义、游戏的公平性;概率=所求情况数与总情况数之比;熟练掌握概率公式是解题关键9
16、、C【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号之和等于5的情况,再利用概率公式求解即可求得答案【详解】解:画树状图得:共有12种等可能的结果,两次摸出的小球标号之和等于5的有4种情况,两次摸出的小球标号之和等于5的概率是:.故选C.【考点】此题考查了列表法或树状图法求概率当有两个元素时,可用树形图列举,也可以列表列举解题时注意:概率=所求情况数与总情况数之比10、C【解析】【分析】利用列表法或树状图即可解决【详解】分别用r、b代表红色帽子、黑色帽子,用R、B、W分别代表红色围巾、黑色围巾、白色围巾,列表如下:RBWrrRrBrWbbRbBbW则
17、所有可能的结果数为6种,其中恰好为红色帽子和红色围巾的结果数为1种,根据概率公式,恰好为红色帽子和红色围巾的概率是故选:C【考点】本题考查了简单事件的概率,常用列表法或画树状图来求解二、填空题1、 【解析】【分析】首先确定m、n的值,推出有序整数(m,n)共有:37=21(种),由方程x2+nx+m=0有两个相等实数根,则需:=n2-4m=0,有(0,0),(1,2),(1,-2)三种可能,由此即可解决问题.【详解】解:m=0,1,n=0,1,2,3有序整数(m,n)共有:37=21(种),方程x2+nx+m=0有两个相等实数根,则需:=n2-4m=0,有(0,0),(1,2),(1,-2)三
18、种可能,关于x的方程x2+nx+m=0有两个相等实数根的概率是,故答案为【考点】此题考查了概率、根的判别式以及根与系数的关系、绝对值不等式等知识,此题难度适中,注意掌握概率=所求情况数与总情况数之比2、【解析】【分析】求出黑色方砖在整个地板中所占的比值,再根据其比值即可得出结论【详解】解:由图可知:黑色方砖有8个小三角形,每4个三角形是大正方形面积的黑色方砖在整个地板中所占的比值,小球最终停留在黑色区域的概率,故答案为:【考点】本题主要考查了简单的概率计算,解题的关键在于能够准确找出黑色方砖面积与整个区域面积的关系.3、 (1),(2) (3)【解析】【分析】根据事件的分类判断,随机事件就是可
19、能发生也可能不发生的事件,必然事件就是一定发生的事件,根据定义即可解决【详解】(1)明天是晴天,无法确定是随机事件;(2)黑暗中从一串不同的钥匙中随意摸出一把,用它打开了门,无法确定是随机事件;(3)某小组有13名同学,至少有2名同学的生日在同一个月,是确定事件是必然事件;(4)在标准大气压下,温度低于0时冰融化,是不可能事件,在这些事件中属于随机事件的有(1),(2);属于必然事件的有(3)故答案为(1),(2);(3)【考点】本题考查了必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件
20、下,可能发生也可能不发生的事件,难度适中4、0.84【解析】【分析】观察表格合格的频率趋近于0.84,从而由此得到口罩合格的概率即可【详解】解:随着抽样的增大,合格的频率趋近于0.84,估计从该批次口罩中任抽一只口罩是合格品的概率为0.84故答案为:0.84【考点】本题考查了用频率估计概率,解题关键是熟练运用频率估计概率解决问题5、10【解析】【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解【详解】解:由题意可得,=0.2,解得,a=10故估计a大约有10个故答案为:10【考点】此题主要考查了利用频率估计概率,本题利用了用大量试验得到
21、的频率可以估计事件的概率关键是根据红球的频率得到相应的等量关系三、解答题1、 (1)60人,详见解析;(2)见解析;(3),详见解析【解析】【分析】(1)根据非常满意人数为9人,占比为15%,可求得总人数; (2)根据(1)补全折线统计图即可; (3)利用概率公式求解即可(1)解:由题意得,非常满意人数为9人,占比为15%,故总人数为:915%=60(人);(2)折线统计图如图所示,(3)该学生的评价为“非常满意”或“满意”的概率为:【考点】本题考查了统计图及概率公式的知识,能够从统计 图中整理出进一步解题的有关信息是解答本题的关键2、(1);(2);(3)第一题.【解析】【分析】(1)由第一
22、道单选题有3个选项,直接利用概率公式求解即可求得答案;(2)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;(3)由如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;即可求得答案【详解】(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率=;故答案为;(2)画树状图为:共有9种等可能的结果数,其中两个都正确的结果数为1,所以小明顺利通关的概率为;(3)建议小明在第一题使用“求助”理由如下:小明将“求助”留在第一题,画树状图为:小明将“求助”留在第一题使用,小明顺利通关的概率=,因为,所以建议小
23、明在第一题使用“求助”【考点】本题考查的是概率,熟练掌握树状图法和概率公式是解题的关键.3、 (1)400 名,D(2)见解析(3)1680人(4)见解析,【解析】【分析】(1)用C组的人数除以C组所占的百分比可得总人数,再用总人数乘以B组所占的百分比,可求出m,从而得到第200位和201位数落在D组,即可求解;(2)求出E租的人数,即可求解;(3)用学校总人数乘以成绩优秀的学生所占的百分比,即可求解;(4)根据题意,画树状图,可得共有20种等可能的结果,恰好抽中一名男生和一名女生的结果有12种,再根据概率公式计算,即可求解(1)解:名,所以本次调查一天随机抽取 400 名学生的成绩,频数直方
24、图中,第200位和201位数落在D组,即所抽取学生成绩的中位数落在D组;故答案为:400,D(2)解:E组的人数为名,补全学生成绩频数直方图如下图:(3)解:该校成绩优秀的学生有(人);(4)解:根据题意,画树状图如图,共有20种等可能的结果,恰好抽中一名男生和一名女生的结果有12种,恰好抽中一名男生和一名女生的概率为【考点】本题主要考查了频数直方图和扇形统计图,用样本估计总体,利用树状图或列表法求概率,明确题意,准确从统计图中获取信息是解题的关键4、 (1)(2)【解析】【分析】(1)直接由概率公式求解即可;(2)画树状图,共有4种等可能的结果,摸出的两个球颜色相同的结果有2种,再由概率公式
25、求解即可(1)解: 甲袋里装有2个红球,1个黄球,共有3个球,摸到红球的概率为;故答案为:;(2)解:根据题意画图如下:共有6种等可能的结果,摸出的两个球颜色相同的结果有2种,则摸出的两个球颜色相同的概率为【考点】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验用到的知识点为:概率所求情况数与总情况数之比5、(1)10;(2);(3)18;(4)P(恰好抽到2名男性)【解析】【分析】(1)用50-4-25-8-3可求出m的值;(2)用360乘以年龄在“”部分人数所
26、占百分比即可得到结论;(3)分别求出每个年龄段女性人数,然后再相加即可;(4)年龄在“”的4人中,男性有2人,女性有2人,分别用A1,A2表示男性,用B1,B2表示女性,然后画出树状图表示出所有等可能结果数,以及关注的事件数,然后利用概率公式进行求解即可.【详解】解:(1)m=50-4-25-8-3=10;故答案为:10;(2)360=;故答案为:;(3)在这50人中女性人数为:4(1-50%)+10(1-60%)+25(1-60%)+8(1-75%)+3(1-100%)=2+4+10+2+0=18;故答案为:18;(4)设两名男性用表示,两名女性用表示,根据题意:可画出树状图:或列表:第2人第1人由上图(或上表)可知,共有12种等可能的结果,符合条件的结果有2种,故P(恰好抽到2名男性)【考点】此题考查了列表法或树状图法求概率以及频数分布表用到的知识点为:概率=所求情况数与总情况数之比
Copyright@ 2020-2024 m.ketangku.com网站版权所有