ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:410KB ,
资源ID:958359      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-958359-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021-2022学年高中数学人教A版必修1讲义:3-2-2 函数模型的应用实例 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021-2022学年高中数学人教A版必修1讲义:3-2-2 函数模型的应用实例 WORD版含解析.doc

1、3.2.2函数模型的应用实例学 习 目 标核 心 素 养1.会利用已知函数模型解决实际问题(重点)2能建立函数模型解决实际问题(重点、难点)3了解拟合函数模型并解决实际问题(重点)通过本节内容的学习,使学生认识函数模型的作用,提升学生数学建模、数据分析的素养.1常用函数模型常用函数模型(1)一次函数模型ykxb(k,b为常数,k0)(2)二次函数模型yax2bxc(a,b,c为常数,a0)(3)指数函数模型ybaxc(a,b,c为常数,b0,a0且a1)(4)对数函数模型ymlogaxn(m,a,n为常数,m0,a0且a1)(5)幂函数模型yaxnb(a,b为常数,a0)(6)分段函数模型y2

2、.建立函数模型解决问题的基本过程思考:解决函数应用问题的基本步骤是什么?提示:利用函数知识和函数观点解决实际问题时,一般按以下几个步骤进行:(一)审题;(二)建模;(三)求模;(四)还原这些步骤用框图表示如图:1如表是函数值y随自变量x变化的一组数据,由此判断它最可能的函数模型是()x45678910y15171921232527A.一次函数模型B二次函数模型C指数函数模型D对数函数模型A自变量每增加1函数值增加2,函数值的增量是均匀的,故为一次函数模型故选A.2某地为了抑制一种有害昆虫的繁殖,引入了一种以该昆虫为食物的特殊动物,已知该动物的繁殖数量y(只)与引入时间x(年)的关系为yalog

3、2(x1),若该动物在引入一年后的数量为100只,则第7年它们发展到()A300只B400只C600只D700只A将x1,y100代入yalog2(x1)得,100alog2(11),解得a100.所以x7时,y100log2(71)300.3据调查,某自行车存车处在某星期日的存车量为2 000辆次,其中变速车存车费是每辆一次0.8元,普通车存车费是每辆一次0.5元,若普通车存车数为x辆次,存车费总收入为y元,则y关于x的函数关系式是()Ay0.3x800(0x2 000)By0.3x1 600(0x2 000)Cy0.3x800(0x2 000)Dy0.3x1 600(0x2 000)D由题

4、意知,变速车存车数为(2 000x)辆次,则总收入y0.5x(2 000x)0.80.3x1 600(0x2 000)4某汽车运输公司购买了一批豪华大客车投入运营据市场分析,每辆客车营运的利润y与营运年数x(xN)为二次函数关系(如图),则客车有营运利润的时间不超过_年7设二次函数ya(x6)211,又过点(4,7),所以a1,即y(x6)211.解y0,得6x6,所以有营运利润的时间为2.又627,所以有营运利润的时间不超过7年利用已知函数模型解决实际问题【例1】前期由于新冠肺炎,各企业的经济效益都受到了一定的影响,但随着我国有效的防控,各行各业也都恢复了运营,经济效益也都有了一定的提高如某

5、租赁公司拥有汽车100辆,当每辆车的月租金为3 000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元(1)当每辆车的月租金为3 600元时,能租出多少辆?(2)当每辆车的月租金为多少元时,租赁公司的月收益最大?最大月收益是多少?解(1)当每辆车的月租金为3 600元时,未租出的车辆数为12,所以此时租出了88辆(2)设每辆车的月租金为x元,租赁公司的月收益为y(x150)50,整理得y162x21 000(x4 050)2307 050,所以当x4 050,即每辆车的租金为4 050元时,租赁公司

6、的月收益最大,最大月收益是307 050元已知函数模型解决实际问题,往往给出的函数解析式含有参数,需要将题中的数据代入函数模型,求得函数模型中的参数,再将问题转化为已知函数解析式求函数值或自变量的值.1某种商品在近30天内每件的销售价格P(元)和时间t(天)的函数关系为:P(tN*)设该商品的日销售量Q(件)与时间t(天)的函数关系为Q40t(0t30,tN*),求这种商品的日销售金额的最大值,并指出日销售金额最大是第几天?解设日销售金额为y(元),则yPQ,所以y(tN*)当0t0)(1)写出y关于x的函数解析式,并指出这个函数的定义域;(2)求羊群年增长量的最大值思路点拨:解(1)根据题意

7、,由于最大畜养量为m只,实际畜养量为x只,则畜养率为,故空闲率为1,由此可得ykx(0xm)(2)对原二次函数配方,得y(x2mx),即当x时,y取得最大值.1(变条件)若将本例“与空闲率的乘积成正比”改为“与空闲率的乘积成反比”又如何表示出y关于x的函数解析式?解根据题意,由于最大畜养量为m只,实际畜养量为x只,则畜养率为,故空闲率为1,因为羊群的年增长量y只和实际畜养量x只与空闲率的乘积成反比,由此可得y(0xm)2(变结论)若本例条件不变,求当羊群的年增长量达到最大值时,k的取值范围解由题意知为给羊群留有一定的生长空间, 则有实际畜养量与年增长量的和小于最大畜养量,即0xym.因为当x时

8、,ymax,所以0m,解得2k0,所以0k2.自建模型时主要抓住四个关键:“求什么,设什么,列什么,限制什么”.求什么就是弄清楚要解决什么问题,完成什么任务.,设什么就是弄清楚这个问题有哪些因素,谁是核心因素,通常设核心因素为自变量.,列什么就是把问题已知条件用所设变量表示出来,可以是方程、函数、不等式等.限制什么主要是指自变量所应满足的限制条件,在实际问题中,除了要使函数式有意义外,还要考虑变量的实际含义,如人不能是半个等.拟合数据构建函数模型解决实际问题探究问题1实际问题中两个变量之间一定有确定的函数关系吗?提示:不一定2对于收集的一组样本数据:(x1,y1),(x2,y2),(x3,y3

9、),(xn,yn)我们常对其如何操作,以发现其所隐含的规律?提示:常先画上述数据的散点图,再借助其变化趋势,结合我们已学习的函数模型,对数据作出合理的分析,从中找出所隐含的规律【例3】某企业常年生产一种出口产品,自2015年以来,每年在正常情况下,该产品产量平稳增长已知2015年为第1年,前4年年产量f(x)(万件)如下表所示:x1234f(x)4.005.587.008.44(1)画出20152018年该企业年产量的散点图;(2)建立一个能基本反映(误差小于0.1)这一时期该企业年产量变化的函数模型,并求出函数解析式;(3)2019年(即x5)因受到某国对我国该产品反倾销的影响,年产量减少3

10、0%,试根据所建立的函数模型,确定2019年的年产量为多少?思路点拨:解(1)画出散点图,如图所示(2)由散点图知,可选用一次函数模型设f(x)axb(a0)由已知得解得f(x)1.5x2.5.检验:f(2)5.5,且|5.585.5|0.080.1,f(4)8.5,且|8.448.5|0.061.2,所以,这个男生偏胖1核心要点:解函数应用问题的步骤(四步八字)(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)求模:求解数学模型,得出数学结论;(4)还原:将数学问题还原

11、为实际问题2数学思想:函数的应用,实质上是函数思想方法的应用,其处理问题的一般方法是根据题意,先构建函数,把所给问题转化为对函数的图象和性质的研究,从而间接求出所需要的结论1思考辨析(正确的打“”,错误的打“”)(1)银行利率、细胞分裂等增长率问题可以用指数函数模型来表述()(2)在函数建模中,散点图可以帮助我们选择恰当的函数模型()(3)当不同的范围下,对应关系不同时,可以选择分段函数模型()答案(1)(2)(3)2一辆汽车在某段路程中的行驶路程s关于时间t变化的图象如图所示,那么图象所对应的函数模型是()A分段函数B二次函数C指数函数D对数函数A由图可知,该图象所对应的函数模型是分段函数模

12、型3若镭经过100年后剩留原来质量的95.76%,设质量为1的镭经过x年后剩留量为y,则x,y的函数关系是()Ay0.957 6By(0.957 6)100xCyDy10.042 4A由题意可知y(95.76%),即y0.957 6.4已知A,B两地相距150 km,某人开汽车以60 km/h的速度从A地到达B地,在B地停留1小时后再以50 km/h的速度返回A地(1)把汽车离开A地的距离s表示为时间t的函数(从A地出发时开始),并画出函数的图象;(2)把车速v(km/h)表示为时间t(h)的函数,并画出函数的图象解(1)汽车由A地到B地行驶t h所走的距离s60t(0t2.5)汽车在B地停留1小时,则汽车到A地的距离s150(2.5t3.5)由B地返回A地,则汽车到A地的距离s15050(t3.5)32550t(3.5t6.5)综上,s它的图象如图(1)所示(1)(2)(2)速度v(km/h)与时间t(h)的函数关系式是v它的图象如图(2)所示

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3