1、人教版九年级数学上册第二十二章二次函数章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知点(1,y1),(2,y2)都在函数yx2的图象上,则()Ay1y2By1y2Cy1y2Dy1,y2大小不
2、确定2、已知抛物线经过点,且该抛物线的对称轴经过点A,则该抛物线的解析式为()ABCD3、关于抛物线:,下列说法正确的是()A它的开口方向向上B它的顶点坐标是C当时,y随x的增大而增大D对称轴是直线4、已知二次函数yax2bxc,其中a0,若函数图象与x轴的两个交点均在负半轴,则下列判断错误的是()Aabc0Bb0Cc0Dbc05、使用家用燃气灶烧开同一壶水所需的燃气量(单位:)与旋钮的旋转角度(单位:度)()近似满足函数关系y=ax2+bx+c(a0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度与燃气量的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为
3、()ABCD6、如图,在平面直角坐标系中,抛物线yax2+bx+c(a0)与x轴交于点A(1,0),顶点坐标为(1,m),与y轴的交点在(0,4),(0,3)之间(包含端点),下列结论:abc0;4ac-b20;ac0;1a;关于x的方程ax2+bx+c+2m0没有实数根其中正确的结论有()A1个B2个C3个D4个7、已知二次函数y = ax2 + bx + c(a0)的图象如图所示,则下列结论:4a + 2b + c 0;y随x的增大而增大;方程ax2 + bx + c = 0两根之和小于零;一次函数y = ax + bc的图象一定不过第二象限,其中正确的个数是()A4个B3个C2个D1个8
4、、为了美观,在加工太阳镜时将下半部分轮廓制作成抛物线的形状(如图所示),对应的两条抛物线关于轴对称, 轴,最低点 在轴上,高 ,则右轮廓所在抛物线的解析式为()ABCD9、已知函数ykx27x7的图象和x轴有交点,则k的取值范围是()ABC且k0D且k010、抛物线y=ax2+bx+3(a0)过A(4,4),B(2,m)两点,点B到抛物线对称轴的距离记为d,满足0d1,则实数m的取值范围是()Am2或m3Bm3或m4C2m3D3m4第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、抛物线的顶点坐标为_2、由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数yax2+b
5、x+c的图象过点(1,0),求证:这个二次函数的图象关于直线x=2对称,根据现有信息,得出有关这个二次函数的下列结论:过点(3,0);顶点(2,2);在x轴上截得的线段的长是2;与y轴的交点是(0,3),其中正确的是_(填序号)3、如图所示四个二次函数的图象中,分别对应的是yax2;ybx2;ycx2;ydx2则a、b、c、d的大小关系为_4、抛物线的图像与轴交于、两点,若的坐标为,则点的坐标为_5、已知二次函数yx2bxc的顶点在x轴上,点A(m1,n)和点B(m3,n)均在二次函数图象上,求n的值为_三、解答题(5小题,每小题10分,共计50分)1、某品牌汽车销售店销售某种品牌的汽车,每辆
6、汽车的进价16(万元)当每辆售价为22(万元)时,每月可销售4辆汽车根据市场行情,现在决定进行降价销售通过市场调查得到了每辆降价的费用(万元)与月销售量(辆)()满足某种函数关系的五组对应数据如下表:4567800.511.52(1)请你根据所给材料和初中所学的函数知识写出与的关系式_;(2)每辆原售价为22万元,不考虑其它成本,降价后每月销售利润y=(每辆原售价-进价)x,请你根据上述条件,求出月销售量为多少时,销售利润最大?最大利润是多少?2、如图,抛物线交x轴于,两点,交y轴于点,点Q为线段BC上的动点(1)求抛物线的解析式;(2)求的最小值;(3)过点Q作交抛物线的第四象限部分于点P,
7、连接PA,PB,记与的面积分别为,设,求点P坐标,使得S最大,并求此最大值3、已知二次函数的图象经过点P(3,1),对称轴是直线 (1)求m、n的值;(2)如图,一次函数y=kx+b的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,点B在点P的右侧,PA:PB=1:5,求一次函数的表达式4、如图,已知二次函数的图象经过点.(1)求的值和图象的顶点坐标(2)点在该二次函数图象上.当时,求的值;若到轴的距离小于2,请根据图象直接写出的取值范围.5、已知抛物线(1)该抛物线的对称轴为 ;(2)若该抛物线的顶点在x轴上,求抛物线的解析式;(3)设点M(m,),N(2,)在该抛物线上,若
8、,求m的取值范围-参考答案-一、单选题1、B【解析】【分析】分别求出和的值即可得到答案【详解】解:点(1,y1),(2,y2)都在函数yx2的图象上,故选B【考点】本题主要考查了二次函数图像上点的坐标特征,正确求出和是解题的关键2、D【解析】【分析】根据抛物线图象性质可得A点是抛物线顶点坐标,再根据顶点坐标公式进行求解即可.【详解】抛物线经过点,且该抛物线的对称轴经过点A,函数的顶点坐标是,解得,经检验均符合该抛物线的解析式为.故选D.【考点】本题主要考查抛物线的性质和顶点坐标公式,解决本题的关键是要熟练掌握抛物线的性质和顶点坐标公式.3、C【解析】【分析】根据题目中的抛物线和二次函数的性质,
9、可以判断各个选项中的说法是否正确,从而可以解答本题【详解】A选项:,抛物线的开口向下,故A错误;B选项:抛物线的顶点坐标是,故B错误;C选项:对抛物线,当时,y随x增大而增大,故C正确;D选项:抛物线的对称轴是直线,故D错误故选:C【考点】本题考查二次函数的性质,解题的关键是明确题意,利用二次函数的性质解答4、B【解析】【分析】根据函数图象与x轴的两个交点均在负半轴,可得抛物线的对称轴与x轴负半轴相交,可以判断a,b,c的符号,进而可得结论【详解】解:因为函数图象与x轴的两个交点均在负半轴,所以抛物线的对称轴与x轴负半轴相交,所以0,c0,因为a0,所以b0,因为c0,所以abc0,bc0,故
10、选:B【考点】本题考查了二次函数图象与系数的关系,解决本题的关键是掌握二次函数图象与系数的关系5、C【解析】【分析】根据已知三点和近似满足函数关系y=ax2+bx+c(a0)可以大致画出函数图象,并判断对称轴位置在36和54之间即可选择答案.【详解】解:由图表数据描点连线,补全图象可得如图,抛物线对称轴在36和54之间,约为41,旋钮的旋转角度在36和54之间,约为41时,燃气灶烧开一壶水最节省燃气,故选C,【考点】本题考查了二次函数的应用,二次函数的图象性质,熟练掌握二次函数图象的对称性质,判断对称轴位置是解题关键,综合性较强,需要有较高的思维能力,用图象法解题是本题考查的重点6、C【解析】
11、【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断【详解】解:抛物线yax2+bx+c(a0)的图象开口向上,a0抛物线yax2+bx+c(a0)的对称轴在y轴的右侧, 又抛物线yax2+bx+c(a0)的图象交y轴的负半轴, ,故正确,符合题意;抛物线yax2+bx+c(a0)的图象与x轴有两个交点,即,故错误,不符合题意;抛物线的顶点坐标为(1,m),与x轴的一个交点为A(-1,0)对称轴为x=1抛物线与x轴的另一个交点为(3,0)当x=3时,y=,ac =0,故错误,不符合题意;当x=-1
12、时,y=a-b+c=0,则c=-a+b, 由-4c-3,得-4-a+b-3,图象的对称轴为x=1,故b=-2a,得-4-3a-3,故1a正确,符合题意;y=ax2+bx+c的顶点为(1,m),即当x=1时y有最小值m而y=m-2和y=ax2+bx+c无交点,即方程ax2+bx+c=m-2无解,关于x的方程ax2+bx+c+2-m=0没有实数根,故正确,符合题意故选:C【考点】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征7、D【解析】【分析】根据函数的图象可知x=2时,函数值的正负性;并且可知
13、与x轴有两个交点,即对应方程有两个实数根;函数的增减性需要找到其对称轴才知具体情况;由函数的图象还可知b、c的正负性,一次函数y=ax+bc所经过的象限进而可知正确选项【详解】当x=2时,y=4a+2b+c,对应的y值为正,即4a+2b+c0,故正确;因为抛物线开口向上,在对称轴左侧,y随x的增大而减小;在对称轴右侧,y随x的增大而增大,故错误;由二次函数y=ax2+bx+c(a0)的图象可知:函数图象与x轴有两个不同的交点,即对应方程有两个不相等的实数根,且正根的绝对值较大,方程ax2+bx+c=0两根之和大于零,故错误;由图象开口向上,知a0,与y轴交于负半轴,知c0,由对称轴,知b0,b
14、c0,一次函数y=ax+bc的图象一定经过第二象限,故错误;综上,正确的个数为1个,故选:D【考点】本题考查了二次函数的图象与系数的关系以及一次函数的图象,利用了数形结合的思想,此类题涉及的知识面比较广,能正确观察图象是解本题的关键8、B【解析】【分析】利用B、D关于y轴对称,CH=1cm,BD=2cm可得到D点坐标为(1,1),由AB=4cm,最低点C在x轴上,则AB关于直线CH对称,可得到左边抛物线的顶点C的坐标为(-3,0),于是得到右边抛物线的顶点C的坐标为(3,0),然后设顶点式利用待定系数法求抛物线的解析式【详解】高CH=1cm,BD=2cm,且B、D关于y轴对称,D点坐标为(1,
15、1),ABx轴,AB=4cm,最低点C在x轴上,AB关于直线CH对称,左边抛物线的顶点C的坐标为(-3,0),右边抛物线的顶点F的坐标为(3,0),设右边抛物线的解析式为y=a(x-3)2,把D(1,1)代入得1=a(1-3)2,解得a=,右边抛物线的解析式为y=(x-3)2,故选:B【考点】本题考查了二次函数的应用:利用实际问题中的数量关系与直角坐标系中线段对应起来,再确定某些点的坐标,然后利用待定系数法确定抛物线的解析式,再利用抛物线的性质解决问题9、B【解析】【分析】对分情况进行讨论,时,为一次函数,符合题意;时,二次函数,求解即可【详解】解:当时,函数为,为一次函数,与x轴有交点,符合
16、题意;当,函数为,为二次函数,因为图像与x轴有交点所以,解得且综上,故选B【考点】此题考查了二次函数与x轴有交点的条件,解题的关键是对分情况进行讨论,易错点是容易忽略的情况10、B【解析】【分析】把A(4,4)代入抛物线y=ax2+bx+3得4a+b=,根据对称轴x=-,B(2,m),且点B到抛物线对称轴的距离记为d,满足0d1,所以0|2-(-)|1,解得a或a-,把B(2,m)代入y=ax2+bx+3得:4a+2b+3=m,得到a=-,所以-或-,即可解答【详解】把A(4,4)代入抛物线y=ax2+bx+3得:16a+4b+3=4,16a+4b=1,4a+b=,对称轴x=,B(2,m),且
17、点B到抛物线对称轴的距离记为d,满足0d1,0|2()|10|1,|1,a或a,把B(2,m)代入y=ax2+bx+3得:4a+2b+3=m,2(2a+b)+3=m,2(2a+4a)+3=m,4a=m,a=-,-或-,m3或m4.故答案选:B.【考点】本题考查了二次函数的性质,解题的关键是熟练的掌握二次函数的性质.二、填空题1、 (1,8)【解析】【分析】根据题意可知,本题考察二次函数的性质,根据二次函数的顶点式,进行求解【详解】解:由二次函数性质可知,的顶点坐标为(,)的顶点坐标为(1,8)故答案为:(1,8)【考点】本题考查了二次函数的性质,先把函数解析式配成顶点式根据顶点式即可得到顶点坐
18、标2、【解析】【分析】利用抛物线的对称性得到抛物线与轴的另一个交点坐标为,从而得到抛物线在轴上截得的线段的长,利用和对称轴方程不能确定顶点的纵坐标和的值.【详解】二次函数的图象过点,对称轴为直线,抛物线与轴的另一个交点坐标为,抛物线在轴上截得的线段的长是.故答案为:.【考点】本题考查了抛物线与轴的交点:把求二次函数(,是常数,)与轴的交点坐标问题转化解.关于的一元二次方程即可求得交点横坐标.3、abdc【解析】【分析】设x=1,函数值分别等于二次项系数,根据图象,比较各对应点纵坐标的大小【详解】因为直线x=1与四条抛物线的交点从上到下依次为(1,a),(1,b),(1,d),(1,c),所以,
19、abdc【考点】本题考查了二次函数的图象,采用了取特殊点的方法,比较字母系数的大小4、【解析】【分析】用二次函数的图象与x轴的交点关于对称轴对称解答即可【详解】解:抛物线的解析式y=a(x-2)2+c,抛物线的对称轴为直线x=2,抛物线y=a(x-2)2+c与x轴交于A、B两点,点A和点B关于直线x=2对称,点A的坐标为(1,0),点B的坐标为(3,0),故答案为(3,0)【考点】本题主要考查了抛物线与x轴的交点,解题的关键是求出抛物线的对称轴方程为直线x=25、4【解析】【分析】由A、B坐标可得对称轴,由顶点在x轴上可得,求得b2(m+1),c(m+1)2,即可得出yx22(m+1)x+(m
20、+1)2,把A的坐标代入即可求得n的值【详解】解:点A(m1,n)和点B(m+3,n)均在二次函数yx2+bx+c图象上,b2(m+1),二次函数yx2+bx+c的顶点在x轴上,b24c0,2(m+1)24c0,c(m+1)2,yx22(m+1)x+(m+1)2,把A的坐标代入得,n(m1)22(m+1)(m1)+(m+1)24,故答案为:4【考点】本题考查了二次函数的性质,二次函数的顶点坐标,表示出b、c的值是解题的关键三、解答题1、 (1);(2)月销售量为8辆时,销售利润最大,最大利润是32万元【解析】【分析】(1)观察表格中数据可知,与的关系式为一次函数的关系,设解析式为,再代入数据求
21、解即可;(2)根据已知条件“每月销售利润y=(每辆原售价-进价)x”,求出y的表达式,然后再借助二次函数求出其最大利润即可【详解】解:(1)由表中数据可知,与的关系式为一次函数的关系,设解析式为,代入点(4,0)和点(5,0.5),得到,解得,故与的关系式为;(2)由题意可知:降价后每月销售利润y=(每辆原售价-进价)x,即:,其中,是的二次函数,且开口向下,其对称轴为,当时,有最大值为万元,答:月销售量为8辆时,销售利润最大,最大利润是32万元【考点】本题考查待定系数法求一次函数解析式以及二次函数的应用,读懂题意,根据题中已知条件列出表达式是解决本题的关键2、(1);(2)5;(3)时,S有
22、最大值【解析】【分析】(1)利用待定系数法即可求解;(2)作点O关于直线BC的对称点D,连接AD,交BC于点Q,此时|QO|+|QA|有最小值为AD,利用勾股定理即可求解;(3)先求得直线BC的表达式为y=x3,直线AC的表达式为y=3x3可设P(m,m22m3)得到直线PQ的表达式可设为y=3x+ m2+m3,由得到二次函数,再利用二次函数的性质求解即可【详解】(1)由已知:y=a(x3)(x+1),将(0,3)代入上式得:3=a(03)(0+1),a=1,抛物线的解析式为y=2x3;(2)作点O关于直线BC的对称点D,连接DC 、DB,B(3,0),C(0,3),BOC=90,OB=OC=
23、3,O、D关于直线BC对称,四边形OBDC为正方形,D(3,3),连接AD,交BC于点Q,由对称性|QD|=|QO|,此时|QO|+|QA|有最小值为AD,AD=,|QO|+|QA|有最小值为5;(3)由已知点A(1,0), B(3,0),C(0,3),设直线BC的表达式为y=kx3,把B(3,0)代入得:0=3k3,解得:,直线BC的表达式为y=x3,同理:直线AC的表达式为y=3x3PQAC,直线PQ的表达式可设为y=3x+b,由(1)可设P(m,m22m3)代入直线PQ的表达式可得b= m2+m3,直线PQ的表达式可设为y=3x+ m2+m3,由,解得,即,由题意:,P,Q都在四象限,P
24、,Q的纵坐标均为负数,即,根据已知条件P的位置可知时,S最大,即时,S有最大值【考点】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数,二次函数的解析式,二次函数的最值等知识,数形结合,熟练掌握相关性质及定理是解题的关键3、(1)m=2,n=2;(2)一次函数的表达式为y=x+4【解析】【分析】(1)根据抛物线的对称轴可求得m的值,把点P的横、纵坐标代入抛物线解析式,可求得n的值;(2)过点P作PCx轴于点C,过点B作BDx轴于D,利用相似三角形的对应边成比例,可求点B的坐标,进而用待定系数法求得一次函数的解析式【详解】解:(1)抛物线的对称轴是直线,=1,m=2二次
25、函数y=x2+mx+n的图象经过点P(3,1),93m+n=1,得出n=3m8n=3m8=2(2)m=2,n=2,二次函数的解析式为y=x2+2x2过点P作PCx轴于点C,过点B作BDx轴于D,则PCBD,如图所示P(3,1),PC=1PA:PB=1:5,=BD=6点B的纵坐标为6把y=6代入y=x2+2x2得,6=x2+2x2解得x1=2,x2=4(舍去)B(2,6)一次函数的图象经过点P和点B,解得一次函数的表达式为y=x+4【考点】本题考查了一次函数、二次函数、相似三角形、待定系数法等知识点,构造相似三角形和待定系数法是解题的关键4、(1);(2) 11;.【解析】【分析】(1)把点P(
26、-2,3)代入y=x2+ax+3中,即可求出a;(2)把m=2代入解析式即可求n的值;由点Q到y轴的距离小于2,可得-2m2,在此范围内求n即可.【详解】(1)解:把代入,得,解得.,顶点坐标为.(2)当m=2时,n=11,点Q到y轴的距离小于2,|m|2,-2m2,2n11.【考点】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征是解题的关键5、(1)直线x=-1;(2)或;(3)当a0时,m4或m2;当a0时,4m2【解析】【分析】(1)利用二次函数的对称轴公式即可求得(2)根据题意可知顶点坐标,再利用待定系数法即可求出二次函数解析式(3)分类讨论当a0时和a0时二次函数的性质,即可求出m的取值范围【详解】(1)利用二次函数的对称轴公式可知对称轴故答案为:(2)抛物线顶点在x轴上,对称轴为,顶点坐标为(-1,0)将顶点坐标代入二次函数解析式得:,整理得:,解得:抛物线解析式为或(3)抛物线的对称轴为直线x-1,N(2,y2)关于直线x-1的对称点为(-4,y2)根据二次函数的性质分类讨论()当a0时,抛物线开口向上,若y1y2,即点M在点N或的上方,则m-4或m2;()当a0时,抛物线开口向下,若y1y2,即点M在点N或的上方,则4m2【考点】本题为二次函数综合题,掌握二次函数的性质是解答本题的关键