1、人教版九年级数学上册第二十二章二次函数同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在同一直角坐标系中,一次函数ykx+1与二次函数yx2+k的大致图象可以是()ABCD2、关于二次函数的最大值
2、或最小值,下列说法正确的是()A有最大值4B有最小值4C有最大值6D有最小值63、如图,已知点M为二次函数图象的顶点,直线分别交x轴,y轴于点A,B点M在内,若点,都在二次函数图象上,则,的大小关系是()ABCD4、抛物线y=ax2+bx+3(a0)过A(4,4),B(2,m)两点,点B到抛物线对称轴的距离记为d,满足0d1,则实数m的取值范围是()Am2或m3Bm3或m4C2m3D3m45、已知在同一直角坐标系中,二次函数和反比例函数的图象如图所示,则一次函数的图象可能是()ABCD6、已知二次函数的图象上有两点A(x1,2023)和B(x2,2023),则当时,二次函数的值是()A2020
3、B2021C2022D20237、记某商品销售单价为x元,商家销售此种商品每月获得的销售利润为y元,且y是关于x的二次函数已知当商家将此种商品销售单价分别定为55元或75元时,他每月均可获得销售利润1800元;当商家将此种商品销售单价定为80元时,他每月可获得销售利润1550元,则y与x的函数关系式是()Ay(x60)2+1825By2(x60)2+1850Cy(x65)2+1900Dy2(x65)2+20008、已知抛物线P:,将抛物线P绕原点旋转180得到抛物线,当时,在抛物线上任取一点M,设点M的纵坐标为t,若,则a的取值范围是()ABCD9、二次函数的图象如图所示,对称轴是直线下列结论
4、:;(为实数)其中结论正确的个数为()A1个B2个C3个D4个10、二次函数的图象如下左图,则一次函数与反比例函数在同一坐标系内的图象大致为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知抛物线与x轴的一个交点为,则代数式的值为_2、二次函数的图象开口向下,则m_3、如图是某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于,两点,拱桥最高点到的距离为,为拱桥底部的两点,且,若的长为,则点到直线的距离为_4、抛物线的顶点坐标为_5、在直角坐标系中,已知直线经过点和点,抛物线y=ax2-x+2(a0)与线段MN有两个不同的交点,则a的取值范围是_三、解
5、答题(5小题,每小题10分,共计50分)1、在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售调查发现,线下的月销量(单位:件)与线下售价(单位:元/件,)满足一次函数的关系,部分数据如下表:(1)求与的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件试问:当为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润2、小明和小丽先后从A地出发同一直道去B地, 设小丽出发第时, 小丽、小明离B地的距离分别为、,与x之间的数表达式,与x之间
6、的函数表达式是(1)小丽出发时,小明离A地的距离为 (2)小丽发至小明到达B地这段时间内,两人何时相距最近?最近距离是多少?3、已知抛物线yax2+3ax+c(a0)与y轴交于点A(1)若a0当a=1,c=1,求该抛物线与x轴交点坐标;点P(m,n)在二次函数抛物线yax2+3ax+c的图象上,且nc0,试求m的取值范围;(2)若抛物线恒在x轴下方,且符合条件的整数a只有三个,求实数c的最小值;(3)若点A的坐标是(0,1),当2cxc时,抛物线与x轴只有一个公共点,求a的取值范围.4、如图,抛物线yax2+bx(a0,b0)交x轴于O,A两点,顶点为B(2,4)(1)求抛物线的解析式;(2)
7、直线ykx+m(k0)过点B,且与抛物线交于另一点D(点D与点A不重合),交y轴于点C过点D作DEx轴于点E,连接AB,CE若k1,求CDE的面积;求证:CEAB5、根据下列条件,求二次函数的解析式(1)图象经过(0,1),(1,2),(2,3)三点;(2)图象的顶点(2,3),且经过点(3,1);-参考答案-一、单选题1、A【解析】【分析】二次函数图象与y轴交点的位置可确定k的正负,再利用一次函数图象与系数的关系可找出一次函数y=-kx+1经过的象限,对比后即可得出结论【详解】解:由yx2+k可知抛物线的开口向上,故B不合题意;二次函数yx2+k与y轴交于负半轴,则k0,k0,一次函数ykx
8、+1的图象经过经过第一、二、三象限,A选项符合题意,C、D不符合题意;故选:A【考点】本题考查了二次函数的图象、一次函数图象以及一次函数图象与系数的关系,根据二次函数的图象找出每个选项中k的正负是解题的关键2、D【解析】【分析】根据二次函数的解析式,得到a的值为2,图象开口向上,函数有最小值,根据定点坐标(4,6),即可得出函数的最小值【详解】解:在二次函数中,a=20,顶点坐标为(4,6),函数有最小值为6故选:D【考点】本题主要考查了二次函数的最值问题,关键是根据二次函数的解析式确定a的符号和根据顶点坐标求出最值3、A【解析】【分析】根据题意确定出的取值范围,然后根据二次函数的性质即可得出
9、,的大小关系【详解】解:点M为二次函数图象的顶点,点,直线分别交x轴,y轴于点A,B,令,解得:,令,解得:,点M在内,解得:,抛物线开口向下,与对称轴距离越近,其值越大;与对称轴距离越远,其值越小;对称轴在之间,比距离对称轴更近,故选:A【考点】本题考查了二次函数的性质,一次函数的图像与坐标轴的交点问题,熟知一次函数的与二次函数的性质是解本题的关键4、B【解析】【分析】把A(4,4)代入抛物线y=ax2+bx+3得4a+b=,根据对称轴x=-,B(2,m),且点B到抛物线对称轴的距离记为d,满足0d1,所以0|2-(-)|1,解得a或a-,把B(2,m)代入y=ax2+bx+3得:4a+2b
10、+3=m,得到a=-,所以-或-,即可解答【详解】把A(4,4)代入抛物线y=ax2+bx+3得:16a+4b+3=4,16a+4b=1,4a+b=,对称轴x=,B(2,m),且点B到抛物线对称轴的距离记为d,满足0d1,0|2()|10|1,|1,a或a,把B(2,m)代入y=ax2+bx+3得:4a+2b+3=m,2(2a+b)+3=m,2(2a+4a)+3=m,4a=m,a=-,-或-,m3或m4.故答案选:B.【考点】本题考查了二次函数的性质,解题的关键是熟练的掌握二次函数的性质.5、B【解析】【分析】根据反比例函数图象和二次函数图象位置可得出:a0,b0,c0,由此可得出,一次函数图
11、象与y轴的交点在y轴的负半轴,对照四个选项即可解答【详解】由二次函数图象开口向下可知:a0,对称轴,由反比例函数图象分别在第一、三象限知:c0,一次函数的图象经过二,三,四象限,与y轴的交点在y轴的负半轴,对照四个选项,只有B选项符合一次函数的图象特征,故选:B【考点】本题考查反比例函数的图象、二次函数的图象、一次函数的图象,熟练掌握函数图象与系数之间的关系是解答的关键6、C【解析】【分析】根据A、B两点纵坐标一样,且都在函数图像上,得出x1、x2是方程2020x2+2021x+2022=2023的两个根,由韦达定理得到,代入解析式即可得解【详解】解:二次函数的图象上有两点A(,2023)和B
12、(,2023),、是方程的两个根,当时,有:,故选C【考点】本题考查了二次函数与一元二次方程的关系、韦达定理;关键在于能发现题干所给条件的特点,会运用韦达定理7、D【解析】【分析】设二次函数的解析式为:yax2bxc,根据题意列方程组即可得到结论【详解】解:设二次函数的解析式为:yax2+bx+c,当x55,y1800,当x75,y1800,当x80时,y1550, ,解得a2,b260,c6450,y与x的函数关系式是y2x2+260x64502(x65)2+2000,故选:D【考点】本题考查了根据实际问题列二次函数关系式,正确的列方程组是解题的关键8、A【解析】【分析】先求出抛物线的解析式
13、,再列出不等式,求出其解集或,从而可得当x=1时,有成立,最后求出a的取值范围【详解】解:抛物线P:,将抛物线P绕原点旋转180得到抛物线,抛物线P与抛物线关于原点对称,设点(x,y)在抛物线P上,则点(-x,-y)一定在抛物线P上,抛物线的解析式为,当时,在抛物线上任取一点M,设点M的纵坐标为t,若,即令,解得:或,设,开口向下,且与x轴的两个交点为(0,0),(4a,0),即当时,要恒成立,此时,当x=1时,即可,得:,解得:,又故选A【考点】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程也考查了二次
14、函数的性质9、C【解析】【分析】由抛物线开口方向得到,对称轴在轴右侧,得到与异号,又抛物线与轴正半轴相交,得到,可得出,选项错误;把代入中得,所以正确;由时对应的函数值,可得出,得到,由,得到,选项正确;由对称轴为直线,即时,有最小值,可得结论,即可得到正确【详解】解:抛物线开口向上,抛物线的对称轴在轴右侧,抛物线与轴交于负半轴,错误;当时,把代入中得,所以正确;当时,即,所以正确;抛物线的对称轴为直线,时,函数的最小值为,即,所以正确故选C【考点】本题考查了二次函数图象与系数的关系:二次项系数决定抛物线的开口方向和大小当时,抛物线向上开口;当时,抛物线向下开口;一次项系数和二次项系数共同决定
15、对称轴的位置:当与同号时,对称轴在轴左;当与异号时,对称轴在轴右常数项决定抛物线与轴交点:抛物线与轴交于抛物线与轴交点个数由判别式确定:时,抛物线与轴有2个交点;时,抛物线与轴有1个交点;时,抛物线与轴没有交点10、C【解析】【分析】根据二次函数图像,确定二次函数系数的符号,再确定一次函数与反比例函数的系数,即可求得【详解】解:二次函数图像开口向上,得到二次函数图像与轴有两个交点,得到二次函数的与轴交点在轴的下方,得到二次函数的对称轴,得到一次函数图像经过一、二、三象限反比例函数的图像经过二、四象限故选:C【考点】此题主要考查了一次函数、反比例函数与二次函数图像与系数的关系,熟练掌握相关知识是
16、解题的关键二、填空题1、2019【解析】【分析】先将点(m,0)代入函数解析式,然后求代数式的值即可得出结果【详解】解:将(m,0)代入函数解析式得,m2-m-1=0,m2-m=1,-3m2+3m+2022=-3(m2-m)+2022=-3+2022=2019故答案为:2019【考点】本题考查了二次函数图象上点的坐标特征及求代数式的值,解题的关键是将点(m,0)代入函数解析式得到有关m的代数式的值2、【解析】【分析】根据二次函数的图象开口向下可得,求解即可【详解】解:二次函数的图象开口向下,解得:,故答案为:【考点】本题考查了二次函数图像与系数的关系,熟知一元二次方程,开口向上;,开口向下是解
17、本题的关键3、10m【解析】【分析】以C为坐标原点建立如图所示的平面直角坐标系,求出点B坐标,设该抛物线的表达式为y=ax2,代入点B坐标求出解析式,进而求得点E坐标,即可求解【详解】解:根据题意,以C为坐标原点建立如图所示的平面直角坐标系,则B(12,8),设该抛物线的表达式为y=ax2,将B(12,8)代入,得:8=a122,解得:a=,该抛物线的表达式为y=x2,当x=18时,y=182=18,E(18,18),点到直线的距离为8(18)=10m,故答案为:10m【考点】本题考查二次函数的应用、求二次函数的解析式式,建立适当的平面直角坐标系,借助二次函数数学模型解决实际问题是解答的关键4
18、、 (1,8)【解析】【分析】根据题意可知,本题考察二次函数的性质,根据二次函数的顶点式,进行求解【详解】解:由二次函数性质可知,的顶点坐标为(,)的顶点坐标为(1,8)故答案为:(1,8)【考点】本题考查了二次函数的性质,先把函数解析式配成顶点式根据顶点式即可得到顶点坐标5、或【解析】【分析】由题意可求点,点,分,两种情况讨论,根据题意列出不等式组,可求a的取值范围【详解】直线经过点和点,抛物线与线段MN有两个不同的交点,当时,解得:,当时,解得:,综上所述:或.故答案为或.【考点】本题考查二次函数图象与系数的关系,一次函数图象上点的坐标特征,二次函数图象点的坐标特征,利用分类讨论思想解决问
19、题是本题的关键三、解答题1、(1);(2)当线下售价定为19元/件时,月利润总和最大,此时最大利润是7300元【解析】【分析】(1)由待定系数法求出y与x的函数关系式即可;(2)设线上和线下月利润总和为w元,则w=400(x-2-10)+y(x-10)=400x-4800+(-100x+2400)(x-10)=-100(x-19)2+7300,由二次函数的性质即可得出答案【详解】解:(1)因为y与x满足一次函数的关系,所以设y=kx+b.将点(12,1200),(13,1100)代入函数解析式得解得与的函数关系式为(2)设商家线上和线下的月利润总和为元,则可得=400(x-12)+(-100x
20、+2400)(x-10)=-100x2+3800x-28800=,因为-1000或m3(2)-9(3)或或【解析】【分析】(1)当,时,令时,求解方程的解即可;将P(m,n)代入yax2+3ax+c中,要使nc0,即可得,解出不等式即可;(2)根据抛物线恒在x轴下方,可得,求出a的取值范围,根据符合条件的整数a只有三个,判断并求出c的取值范围,从而求出c的最小值;(3)根据点A的坐标得到抛物线解析式为,然后根据2cxc时,抛物线与x轴只有一个公共点,分三种情况:当时,当时,当时,进行分类讨论求出符合题意的a的取值范围.(1)解:当,时,当时,解得:,抛物线与轴的交点坐标,;,解得:或;(2)解
21、:抛物线恒在x轴下方,解得:,符合条件的整数a只有三个,解得:,的最小值为,(3)解:点A的坐标是(0,1),又当时,抛物线与x轴只有一个公共点,当时,当时,当时,解得:,或者,无解当时,无解,或者,解得:,当时,解得:,此时,令时,则,解得:,符合题意,综合上述可知:a的取值范围为:或或.【考点】此题主要考查的是函数图象与x轴的交点问题,在x的取值范围内,根据交点个数进行分类讨论,从而求出a的取值范围4、(1)y=x2-4x;(2);见解析【解析】【分析】(1)先求出A点的坐标,然后用待定系数法求解即可;(2)先求出直线BD的解析式,然后得到D点的坐标,由此求解即可;过点B作BFx轴于F,则
22、AFB=COE=90,由(1)得A(4,0),B(2,-4),则AF=2,BF=4,联立得,求得,从而可以得到,即可证明AFBEOC,得到FAB=OEC,由此即可证明【详解】解:(1)抛物线yax2+bx(a0,b0)交x轴于O,A两点,顶点为B(2,4)抛物线的对称轴为,A(4,0),解得,抛物线的解析式为:;(2)当k=1时,直线的解析式为,直线经过B(2,-4),直线的解析式为,解得或(舍去)D(3,-3),DE=3,OE=3,;如图,过点B作BFx轴于F,AFB=COE=90,由(1)得A(4,0),B(2,-4),F(2,0),AF=2,BF=4,联立得,OE=,C是直线与y轴的交点
23、,C(0,m),OC=-m,AFBEOC,FAB=OEC,AB/CE【考点】本题主要考查了一次函数和二次函数的综合,待定系数法求函数解析式,相似三角形的性质与判定,平行线的判定,一元二次方程根与系数的关系等等,解题的关键在于能够熟练掌握相关知识进行求解5、(1)y4x27x+1;(2)y2(x2)2+3【解析】【分析】(1)先设出抛物线的解析式为yax2+bx+c,再将点(0,1),(1,2),(2,3)代入解析式中,即可求得抛物线的解析式;(2)由于已知抛物线的顶点坐标,则可设顶点式ya(x2)23,然后把(3,1)代入求出a的值即可【详解】解:(1)设出抛物线的解析式为yax2+bx+c,将(0,1),(1,2),(2,3)代入解析式,得:,解得:,抛物线解析式为:y4x27x+1;(2)设抛物线解析式为ya(x2)2+3,把(3,1)代入得:a(32)2+31,解得a2,所以抛物线解析式为y2(x2)2+3【考点】本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解
Copyright@ 2020-2024 m.ketangku.com网站版权所有