收藏 分享(赏)

基础强化人教版九年级数学上册第二十二章二次函数同步练习试卷.docx

上传人:a**** 文档编号:958320 上传时间:2025-12-19 格式:DOCX 页数:23 大小:577.55KB
下载 相关 举报
基础强化人教版九年级数学上册第二十二章二次函数同步练习试卷.docx_第1页
第1页 / 共23页
基础强化人教版九年级数学上册第二十二章二次函数同步练习试卷.docx_第2页
第2页 / 共23页
基础强化人教版九年级数学上册第二十二章二次函数同步练习试卷.docx_第3页
第3页 / 共23页
基础强化人教版九年级数学上册第二十二章二次函数同步练习试卷.docx_第4页
第4页 / 共23页
基础强化人教版九年级数学上册第二十二章二次函数同步练习试卷.docx_第5页
第5页 / 共23页
基础强化人教版九年级数学上册第二十二章二次函数同步练习试卷.docx_第6页
第6页 / 共23页
基础强化人教版九年级数学上册第二十二章二次函数同步练习试卷.docx_第7页
第7页 / 共23页
基础强化人教版九年级数学上册第二十二章二次函数同步练习试卷.docx_第8页
第8页 / 共23页
基础强化人教版九年级数学上册第二十二章二次函数同步练习试卷.docx_第9页
第9页 / 共23页
基础强化人教版九年级数学上册第二十二章二次函数同步练习试卷.docx_第10页
第10页 / 共23页
基础强化人教版九年级数学上册第二十二章二次函数同步练习试卷.docx_第11页
第11页 / 共23页
基础强化人教版九年级数学上册第二十二章二次函数同步练习试卷.docx_第12页
第12页 / 共23页
基础强化人教版九年级数学上册第二十二章二次函数同步练习试卷.docx_第13页
第13页 / 共23页
基础强化人教版九年级数学上册第二十二章二次函数同步练习试卷.docx_第14页
第14页 / 共23页
基础强化人教版九年级数学上册第二十二章二次函数同步练习试卷.docx_第15页
第15页 / 共23页
基础强化人教版九年级数学上册第二十二章二次函数同步练习试卷.docx_第16页
第16页 / 共23页
基础强化人教版九年级数学上册第二十二章二次函数同步练习试卷.docx_第17页
第17页 / 共23页
基础强化人教版九年级数学上册第二十二章二次函数同步练习试卷.docx_第18页
第18页 / 共23页
基础强化人教版九年级数学上册第二十二章二次函数同步练习试卷.docx_第19页
第19页 / 共23页
基础强化人教版九年级数学上册第二十二章二次函数同步练习试卷.docx_第20页
第20页 / 共23页
基础强化人教版九年级数学上册第二十二章二次函数同步练习试卷.docx_第21页
第21页 / 共23页
基础强化人教版九年级数学上册第二十二章二次函数同步练习试卷.docx_第22页
第22页 / 共23页
基础强化人教版九年级数学上册第二十二章二次函数同步练习试卷.docx_第23页
第23页 / 共23页
亲,该文档总共23页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十二章二次函数同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,抛物线与抛物线交于点,且它们分别与轴交于点、过点作轴的平行线,分别与两抛物线交于点、,则以下结论:无论取

2、何值,总是负数;抛物线可由抛物线向右平移3个单位,再向下平移3个单位得到;当时,随着的增大,的值先增大后减小;四边形为正方形其中正确的是()ABCD2、已知二次函数的图象上有两点A(x1,2023)和B(x2,2023),则当时,二次函数的值是()A2020B2021C2022D20233、当函数 是二次函数时,的取值为()ABCD4、矩形的周长为12cm,设其一边长为xcm,面积为ycm2,则y与x的函数关系式及其自变量x的取值范围均正确的是()Ay=x2+6x(3x6)By=x2+12x(0x12)Cy=x2+12x(6x12)Dy=x2+6x(0x6)5、在平面直角坐标系中,对于点,若,

3、则称点P为“同号点”,下列函数的图象上不存在“同号点”的是()ABCD6、关于抛物线:,下列说法正确的是()A它的开口方向向上B它的顶点坐标是C当时,y随x的增大而增大D对称轴是直线7、抛物线y=ax2+bx+3(a0)过A(4,4),B(2,m)两点,点B到抛物线对称轴的距离记为d,满足0d1,则实数m的取值范围是()Am2或m3Bm3或m4C2m3D3m48、已知二次函数(其中是自变量)的图象与轴没有公共点,且当时,随的增大而减小,则实数的取值范围是()ABCD9、为了美观,在加工太阳镜时将下半部分轮廓制作成抛物线的形状(如图所示),对应的两条抛物线关于轴对称, 轴,最低点 在轴上,高 ,

4、则右轮廓所在抛物线的解析式为()ABCD10、把函数的图象向右平移1个单位长度,平移后图象的函数解析式为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知二次函数,如果随的增大而增大,那么的取值范围是_2、如图抛物线与轴相交于点,与轴相交于点,则的面积为_3、某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份如果这两种快餐每天销售总份数不变,那么这两种

5、快餐一天的总利润最多是_元4、已知二次函数y=x24x+k的图象的顶点在x轴下方,则实数k的取值范围是_5、已知二次函数的图象与x轴的两个交点A,B关于直线x=1对称,且AB=6,顶点在函数y=2x的图象上,则这个二次函数的表达式为_三、解答题(5小题,每小题10分,共计50分)1、如图,已知二次函数与轴交于、两点(点位于点的左侧),与轴交于点,已知的面积是6(1)求的值;(2)在抛物线上是否存在一点,使存在请求出坐标,若不存在请说明理由2、在美化校园的活动中,某兴趣小组用总长为米的围栏材料,一面靠墙,围成一个矩形花园,墙长米,设的长为米,矩形花园的面积为平方米,当为多少时,取得最大值,最大值

6、是多少?3、已知,如图,二次函数的图象与轴交于A,两点,与轴交于点,且经过点(1)求该抛物线的解析式;(2)求该抛物线的顶点坐标和对称轴(3)求的面积,写出时的取值范围4、已知抛物线经过点(1,2),(2,13)(1)求a,b的值;(2)若(5,),(m,)是抛物线上不同的两点,且,求m的值5、已知:二次函数(1)通过配方,将其写成的形式;(2)求出函数图象与轴的交点的坐标;(3)当时,直接写出的取值范围;(4)当_时,随的增大而减少-参考答案-一、单选题1、B【解析】【分析】根据非负数的相反数或者直接由图像判断即可;先求抛物线的解析式,再根据抛物线的顶点坐标,判断平移方向和平移距离即可判断;

7、先根据题意得出时,观察图像可知,然后计算,进而根据一次函数的性质即可判断;分别计算出的坐标,根据正方形的判定定理进行判断即可【详解】,无论取何值,总是负数,故正确;抛物线与抛物线交于点,即,解得,抛物线,抛物线的顶点,抛物线的顶点为,将向右平移3个单位,再向下平移3个单位即为,即将抛物线向右平移3个单位,再向下平移3个单位可得到抛物线,故正确;,将代入抛物线,解得,将代入抛物线,解得,从图像可知抛物线的图像在抛物线图像的上方,当,随着的增大,的值减小,故不正确;设与轴交于点,由可知,当时,即,四边形是平行四边形,四边形是正方形,故正确,综上所述,正确的有,故选:B【考点】本题考查了二次函数图像

8、与性质,一次函数的性质,平移,正方形的判定定理,解题的关键是综合运用以上知识2、C【解析】【分析】根据A、B两点纵坐标一样,且都在函数图像上,得出x1、x2是方程2020x2+2021x+2022=2023的两个根,由韦达定理得到,代入解析式即可得解【详解】解:二次函数的图象上有两点A(,2023)和B(,2023),、是方程的两个根,当时,有:,故选C【考点】本题考查了二次函数与一元二次方程的关系、韦达定理;关键在于能发现题干所给条件的特点,会运用韦达定理3、D【解析】【分析】根据二次函数的定义去列式求解计算即可【详解】函数 是二次函数,a-10,=2,a1,故选D【考点】本题考查了二次函数

9、的定义,熟记二次函数的定义并灵活列式计算是解题的关键4、D【解析】【分析】已知一边长为xcm,则另一边长为(6-x)cm,根据矩形的面积公式即可解答【详解】解:已知一边长为xcm,则另一边长为(6-x)cm则y=x(6-x)化简可得y=-x2+6x,(0x6),故选:D【考点】此题主要考查了根据实际问题列二次函数关系式的知识,解题的关键是用x表示出矩形的另一边,此题难度一般5、C【解析】【分析】由题意,图象经过第一和第三象限的函数都是满足条件的,由此判断即可【详解】解:由题意,图象经过第一和第三象限的函数都是满足条件的,函数的图象在二、四象限,不满足条件,故选:C【考点】本题考查了反比函数的性

10、质,一次函数的性质,二次函数的性质可以用特值法进行快速的排除6、C【解析】【分析】根据题目中的抛物线和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题【详解】A选项:,抛物线的开口向下,故A错误;B选项:抛物线的顶点坐标是,故B错误;C选项:对抛物线,当时,y随x增大而增大,故C正确;D选项:抛物线的对称轴是直线,故D错误故选:C【考点】本题考查二次函数的性质,解题的关键是明确题意,利用二次函数的性质解答7、B【解析】【分析】把A(4,4)代入抛物线y=ax2+bx+3得4a+b=,根据对称轴x=-,B(2,m),且点B到抛物线对称轴的距离记为d,满足0d1,所以0|2-(-

11、)|1,解得a或a-,把B(2,m)代入y=ax2+bx+3得:4a+2b+3=m,得到a=-,所以-或-,即可解答【详解】把A(4,4)代入抛物线y=ax2+bx+3得:16a+4b+3=4,16a+4b=1,4a+b=,对称轴x=,B(2,m),且点B到抛物线对称轴的距离记为d,满足0d1,0|2()|100,即(-4)2-4k0,k4,故答案为k4.【考点】本题考查了抛物线与x轴的交点问题,由题意得出抛物线与x轴有两个交点是解题的关键.5、y=x2+x【解析】【分析】利用抛物线与x轴的两个交点关于对称轴对称,求出A和B的坐标,再根据顶点坐标在y=2x的图象上,将x=1代入即可求出顶点坐标

12、,设顶点式即可求出二次函数表达式.【详解】解:二次函数的图象与x轴的两个交点A,B关于直线x=1对称,且AB=6,A(-4,0),B(2,0),顶点横坐标为-1,又顶点在函数y=2x的图象上,将x=1代入,得y=2,即顶点坐标为(-1,-2)设二次函数解析式为y=a(x+1)2-2,代入A(-4,0),得a=,即y=(x+1)2-2=x2+x【考点】本题考查了二次函数解析式的求法,中等难度,根据对称轴找到顶点坐标和与x轴的交点坐标是解题关键.三、解答题1、(1);(2)存在,点的坐标为或或【解析】【分析】(1)根据求出A,B,C的坐标,再由的面积是6得到关于a的方程即可求解;(2)根据得到点的

13、纵坐标为3,分别代入解析式即可求解【详解】(1),令,则,令,即解得,由图象知:,解得:,(舍去);(2),.点的纵坐标为3,把代入得,解得或,把代入得,解得或,点的坐标为或或【考点】此题主要考查二次函数的图像与性质,解题的关键是熟知待定系数法的应用2、80【解析】【分析】由题意可得出:,再利用二次函数增减性求得最值【详解】.,当时,有最大值,最大值【考点】此题主要考查了二次函数的应用以及二次函数最值求法,得出S与x的函数关系式是解题关键3、(1);(2)顶点坐标是,对称轴是;(3)的面积为21,时,的取值范围是【解析】【分析】(1)直接利用待定系数法将已知点代入得出方程组求出答案;(2)直接

14、利用配方法求出抛物线顶点坐标和对称轴即可;(3)首先求出抛物线与x轴的交点坐标,然后利用三角形面积公式和图像得出答案【详解】(1)二次函数的图象经过点、,解这个方程组,得,该二次函数的解析式是;(2),顶点坐标是;对称轴是;(3)二次函数的图象与轴交于,两点,解这个方程得:,即二次函数与轴的两个交点的坐标为,的面积由图像可得,当时,故时,的取值范围是【考点】本题主要考查了待定系数法求函数表达式,求三角形面积,图像法求自变量求职范围,用配方法求抛物线顶点坐标和对称轴,求出函数表达式是解决问题的关键4、(1);(2)【解析】【分析】(1)将点的坐标分别代入解析式即可求得a,b的值;(2)将(5,)

15、,(m,)代入解析式,联立即可求得m的值.【详解】(1)抛物线经过点(1,-2),(-2,13),解得,a的值为1,b的值为-4;(2)(5,),(m,)是抛物线上不同的两点,解得或(舍去)m的值为-1.【考点】本题主要考查二次函数性质,用待定系数法求二次函数,正确解出方程组求得未知数是解题的关键.5、 (1)(2)A(-2,0),B(4,0),C(0,4)(3)-2x4(4)1【解析】【分析】(1)利用配方法先提出二次项系数,在加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式;(2)令y=0,解得x的值,可得出函数图象与x轴的交点坐标,令x=0,解得y的值,可得出函数图象与y轴的交点坐标(3)根据函数的开口方向,与x轴的交点坐标结合图象可得;(4)根据二次函的性质即可求得(1)解:=;(2)令y=0,则,解得:x=-2或x=4,函数图象与x轴的交点坐标为A(-2,0)和B(4,0),令x=0,则y=4,函数图象与y轴的交点坐标为C(0,4);(3)中,函数图象开口向下,函数图象与x轴交于A(-2,0)和B(4,0),当y0时,x的取值范围是-2x4;(4),函数图象开口向下,对称轴为直线x=1,当x1时,y随x的增大而减小【考点】本题主要考查抛物线与坐标轴的交点,二次函数的性质,等知识点,掌握二次函数的顶点式y=a(x-h)2+k的性质和数形结合思想是解题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1