收藏 分享(赏)

基础强化人教版九年级数学上册第二十二章二次函数专题测评练习题(含答案详解).docx

上传人:a**** 文档编号:958306 上传时间:2025-12-19 格式:DOCX 页数:29 大小:679.66KB
下载 相关 举报
基础强化人教版九年级数学上册第二十二章二次函数专题测评练习题(含答案详解).docx_第1页
第1页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题测评练习题(含答案详解).docx_第2页
第2页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题测评练习题(含答案详解).docx_第3页
第3页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题测评练习题(含答案详解).docx_第4页
第4页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题测评练习题(含答案详解).docx_第5页
第5页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题测评练习题(含答案详解).docx_第6页
第6页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题测评练习题(含答案详解).docx_第7页
第7页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题测评练习题(含答案详解).docx_第8页
第8页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题测评练习题(含答案详解).docx_第9页
第9页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题测评练习题(含答案详解).docx_第10页
第10页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题测评练习题(含答案详解).docx_第11页
第11页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题测评练习题(含答案详解).docx_第12页
第12页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题测评练习题(含答案详解).docx_第13页
第13页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题测评练习题(含答案详解).docx_第14页
第14页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题测评练习题(含答案详解).docx_第15页
第15页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题测评练习题(含答案详解).docx_第16页
第16页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题测评练习题(含答案详解).docx_第17页
第17页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题测评练习题(含答案详解).docx_第18页
第18页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题测评练习题(含答案详解).docx_第19页
第19页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题测评练习题(含答案详解).docx_第20页
第20页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题测评练习题(含答案详解).docx_第21页
第21页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题测评练习题(含答案详解).docx_第22页
第22页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题测评练习题(含答案详解).docx_第23页
第23页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题测评练习题(含答案详解).docx_第24页
第24页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题测评练习题(含答案详解).docx_第25页
第25页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题测评练习题(含答案详解).docx_第26页
第26页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题测评练习题(含答案详解).docx_第27页
第27页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题测评练习题(含答案详解).docx_第28页
第28页 / 共29页
基础强化人教版九年级数学上册第二十二章二次函数专题测评练习题(含答案详解).docx_第29页
第29页 / 共29页
亲,该文档总共29页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十二章二次函数专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知在同一直角坐标系中,二次函数和反比例函数的图象如图所示,则一次函数的图象可能是()ABCD2、把抛物线的图

2、象向左平移1个单位,再向上平移2个单位,所得的抛物线的函数关系式是()ABCD3、如图所示,将一根长m的铁丝首尾相接围成矩形,则矩形的面积与其一边满足的函数关系是()A正比例函数关系B一次函数关系C二次函数关系D反比例函数关系4、关于抛物线:,下列说法正确的是()A它的开口方向向上B它的顶点坐标是C当时,y随x的增大而增大D对称轴是直线5、若函数y(a1)x2+2x+a21是二次函数,则()Aa1Ba1Ca1Da16、如图,抛物线交轴于点,交轴于点若点坐标为,对称轴为直线,则下列结论错误的是()A二次函数的最大值为BCD7、二次函数yax2+bx+c的部分图象如图所示,由图象可知该抛物线与x轴

3、的交点坐标是()A(1,0)和(5,0)B(1,0)和(5,0)C(0,1)和(0,5)D(0,1)和(0,5)8、对于函数的图象,下列说法不正确的是()A开口向下B对称轴是直线C最大值为D与轴不相交9、在平面直角坐标系中,将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为()ABCD10、二次函数的图象如下左图,则一次函数与反比例函数在同一坐标系内的图象大致为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若某二次函数图象的形状与抛物线y3x2相同,且顶点坐标为(0,2),则它的表达式为_2、在平面直角坐标系中,已知

4、和是抛物线上的两点,将抛物线的图象向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,则n的最小值为_3、各种盛水容器可以制作精致的家用流水景观(如图1)科学原理:如图2,始终盛满水的圆柱体水桶水面离地面的高度为,如果在离水面竖直距离为h(单位:)的地方开大小合适的小孔,那么从小孔射出水的射程s(单位:)与h的关系式为,则射程s最大值是_(射程是指水流落地点离小孔的水平距离)4、如图是某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于,两点,拱桥最高点到的距离为,为拱桥底部的两点,且,若的长为,则点到直线的距离为_5、如图,ABC90,AC6,以AB为边长向外作等边ABM,连C

5、M,则CM的最大值为 _三、解答题(5小题,每小题10分,共计50分)1、如图,抛物线交x轴于,两点,交y轴于点,点Q为线段BC上的动点(1)求抛物线的解析式;(2)求的最小值;(3)过点Q作交抛物线的第四象限部分于点P,连接PA,PB,记与的面积分别为,设,求点P坐标,使得S最大,并求此最大值2、如图,抛物线ya(x2)2+3(a为常数且a0)与y轴交于点A(0,)(1)求该抛物线的解析式;(2)若直线ykx(k0)与抛物线有两个交点,交点的横坐标分别为x1,x2,当x12+x2210时,求k的值;(3)当4xm时,y有最大值,求m的值3、如图,已知二次函数与轴交于、两点(点位于点的左侧),

6、与轴交于点,已知的面积是6(1)求的值;(2)在抛物线上是否存在一点,使存在请求出坐标,若不存在请说明理由4、已知关于的二次函数(1)求证:不论为何实数,该二次函数的图象与轴总有两个公共点;(2)若,两点在该二次函数的图象上,直接写出与的大小关系;(3)若将抛物线沿轴翻折得到新抛物线,当时,新抛物线对应的函数有最小值3,求的值5、如图,在直角坐标系中,二次函数的图象与x轴相交于点和点,与y轴交于点C(1)求的值;(2)点为抛物线上的动点,过P作x轴的垂线交直线于点Q当时,求当P点到直线的距离最大时m的值;是否存在m,使得以点为顶点的四边形是菱形,若不存在,请说明理由;若存在,请求出m的值-参考

7、答案-一、单选题1、B【解析】【分析】根据反比例函数图象和二次函数图象位置可得出:a0,b0,c0,由此可得出,一次函数图象与y轴的交点在y轴的负半轴,对照四个选项即可解答【详解】由二次函数图象开口向下可知:a0,对称轴,由反比例函数图象分别在第一、三象限知:c0,一次函数的图象经过二,三,四象限,与y轴的交点在y轴的负半轴,对照四个选项,只有B选项符合一次函数的图象特征,故选:B【考点】本题考查反比例函数的图象、二次函数的图象、一次函数的图象,熟练掌握函数图象与系数之间的关系是解答的关键2、A【解析】【分析】求出原抛物线的顶点坐标,再根据向左平移横坐标减,向上平移纵坐标加求出平移后的抛物线的

8、顶点坐标,然后利用顶点式解析式写出即可【详解】解:抛物线的顶点坐标为(2,1),向左平移1个单位,再向上平移2个单位后的顶点坐标是(1,3)所得抛物线解析式是故选:A【考点】本题考查了二次函数图象的平移,利用顶点的变化确定抛物线解析式的变化更简便3、C【解析】【分析】设矩形的一边长为xm,求出矩形面积即可判断【详解】设矩形的一边长为xm,另一边长为(1-x)m,面积用y表示,故选择:C【考点】本题考查列函数关系式,并判断函数的类型,掌握列函数的方法和函数的特征是解题关键4、C【解析】【分析】根据题目中的抛物线和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题【详解】A选项:,

9、抛物线的开口向下,故A错误;B选项:抛物线的顶点坐标是,故B错误;C选项:对抛物线,当时,y随x增大而增大,故C正确;D选项:抛物线的对称轴是直线,故D错误故选:C【考点】本题考查二次函数的性质,解题的关键是明确题意,利用二次函数的性质解答5、A【解析】【分析】利用二次函数定义进行解答即可【详解】解:由题意得:a10,解得:a1,故选:A【考点】本题主要考查了二次函数的定义,准确计算是解题的关键6、D【解析】【分析】根据抛物线的开口方向、对称轴、顶点坐标、与x轴、y轴的交点以及过特殊点时相应的系数a、b、c满足的关系进行综合判断即可【详解】解:抛物线yax2bxc过点A(4,0),对称轴为直线

10、x1,因此有:x1,即2ab0,因此选项D符合题意;当x1时,yabc的值最大,选项A不符合题意;由抛物线的对称性可知,抛物线与x轴的另一个交点为(2,0),当x1时,yabc0,因此选项B不符合题意;抛物线与x轴有两个不同交点,因此b24ac0,故选项C不符合题意;故选:D【考点】本题考查二次函数的图象和性质,掌握抛物线的位置与系数a、b、c的关系是正确判断的前提7、A【解析】【分析】首先根据图像得出抛物线的对称轴和其中一个交点坐标,然后根据二次函数的对称性即可求得另一个交点坐标【详解】解:由图像可得,抛物线的对称轴为,与x轴的一个交点坐标为(5,0),抛物线与x轴的两个交点关于对称轴对称,

11、抛物线与x轴的另一个交点坐标为(1,0),故选:A【考点】此题考查了二次函数与x轴的交点,二次函数的对称性,解题的关键是根据二次函数的对称性求出与x轴的另一个交点坐标8、D【解析】【分析】根据二次函数的性质,进行判断,即可得到答案.【详解】解:,则开口向下,故A正确;对称轴是直线,故B正确;当,y有最大值k,故C正确;当,与y轴肯定有交点,故D错误;故选择:D.【考点】本题考查了二次函数的性质,解题的关键是熟记二次函数的性质.9、B【解析】【分析】先求出平移后抛物线的顶点坐标,进而即可得到答案【详解】解:的顶点坐标为(0,0)将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛

12、物线的顶点坐标为(-2,1),所得抛物线对应的函数表达式为,故选B【考点】本题主要考查二次函数的平移规律,找出平移后二次函数图像的顶点坐标或掌握“左加右减,上加下减”,是解题的关键10、C【解析】【分析】根据二次函数图像,确定二次函数系数的符号,再确定一次函数与反比例函数的系数,即可求得【详解】解:二次函数图像开口向上,得到二次函数图像与轴有两个交点,得到二次函数的与轴交点在轴的下方,得到二次函数的对称轴,得到一次函数图像经过一、二、三象限反比例函数的图像经过二、四象限故选:C【考点】此题主要考查了一次函数、反比例函数与二次函数图像与系数的关系,熟练掌握相关知识是解题的关键二、填空题1、y3x

13、22或y3x22【解析】【分析】根据二次函数的图象特点即可分类求解【详解】二次函数的图象与抛物线y3x2的形状相同,说明它们的二次项系数的绝对值相等,故本题有两种可能,即y3x22或y3x22故答案为y3x22或y3x22【考点】此题主要考查二次函数的图象,解题的关键是熟知二次函数形状相同,二次项系数的绝对值相等2、4【解析】【分析】通过A、B两点得出对称轴,再根据对称轴公式算出b,由此可得出二次函数表达式,从而算出最小值即可推出n的最小值【详解】A、B的纵坐标一样,A、B是对称的两点,对称轴,即,b=-4抛物线解析式为:抛物线顶点(2,-3)满足题意n的最小值为4,故答案为:4【考点】本题考

14、查二次函数对称轴的性质,顶点式的变形及抛物线的平移,关键在于根据对称轴的性质从题意中判断出对称轴3、20【解析】【分析】将s2=4h(20-h)写成顶点式,按照二次函数的性质得出s2的最大值,再求s2的算术平方根即可【详解】解:s2=4h(20-h)=-4(h-10)2+400,当h=10cm时,s有最大值20cm当h为10cm时,射程s有最大值,最大射程是20cm;故答案为:20【考点】本题考查了二次函数在实际问题中的应用,理清题中的数量关系并明确二次函数的性质是解题的关键4、10m【解析】【分析】以C为坐标原点建立如图所示的平面直角坐标系,求出点B坐标,设该抛物线的表达式为y=ax2,代入

15、点B坐标求出解析式,进而求得点E坐标,即可求解【详解】解:根据题意,以C为坐标原点建立如图所示的平面直角坐标系,则B(12,8),设该抛物线的表达式为y=ax2,将B(12,8)代入,得:8=a122,解得:a=,该抛物线的表达式为y=x2,当x=18时,y=182=18,E(18,18),点到直线的距离为8(18)=10m,故答案为:10m【考点】本题考查二次函数的应用、求二次函数的解析式式,建立适当的平面直角坐标系,借助二次函数数学模型解决实际问题是解答的关键5、#【解析】【分析】过点M作MDBC,交BC的延长线于点D,设ABx,利用勾股定理表示出BC,利用解直角三角形表示出MD,BD,再

16、利用勾股定理求得CM的长,根据配方法利用非负数的性质即可得到CM的最大值【详解】如图,过点M作MDBC,交BC的延长线于点D, 设ABx,则,ABM是等边三角形,BMABx,ABM60,ABC90,MBD30,MDBC,在RtMDC中,当x218时,CM有最大值,CM的最大值为:故答案为:【考点】本题考查勾股定理以及配方法,掌握配方法求出最值是解题的关键三、解答题1、(1);(2)5;(3)时,S有最大值【解析】【分析】(1)利用待定系数法即可求解;(2)作点O关于直线BC的对称点D,连接AD,交BC于点Q,此时|QO|+|QA|有最小值为AD,利用勾股定理即可求解;(3)先求得直线BC的表达

17、式为y=x3,直线AC的表达式为y=3x3可设P(m,m22m3)得到直线PQ的表达式可设为y=3x+ m2+m3,由得到二次函数,再利用二次函数的性质求解即可【详解】(1)由已知:y=a(x3)(x+1),将(0,3)代入上式得:3=a(03)(0+1),a=1,抛物线的解析式为y=2x3;(2)作点O关于直线BC的对称点D,连接DC 、DB,B(3,0),C(0,3),BOC=90,OB=OC=3,O、D关于直线BC对称,四边形OBDC为正方形,D(3,3),连接AD,交BC于点Q,由对称性|QD|=|QO|,此时|QO|+|QA|有最小值为AD,AD=,|QO|+|QA|有最小值为5;(

18、3)由已知点A(1,0), B(3,0),C(0,3),设直线BC的表达式为y=kx3,把B(3,0)代入得:0=3k3,解得:,直线BC的表达式为y=x3,同理:直线AC的表达式为y=3x3PQAC,直线PQ的表达式可设为y=3x+b,由(1)可设P(m,m22m3)代入直线PQ的表达式可得b= m2+m3,直线PQ的表达式可设为y=3x+ m2+m3,由,解得,即,由题意:,P,Q都在四象限,P,Q的纵坐标均为负数,即,根据已知条件P的位置可知时,S最大,即时,S有最大值【考点】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数,二次函数的解析式,二次函数的最值等知

19、识,数形结合,熟练掌握相关性质及定理是解题的关键2、(1);(2);(3)【解析】【分析】(1)把代入抛物线的解析式,解方程求解即可; (2)联立两个函数的解析式,消去 得:再利用根与系数的关系与可得关于的方程,解方程可得答案;(3)先求解抛物线的对称轴方程,分三种情况讨论,当 结合函数图象,利用函数的最大值列方程,再解方程即可得到答案.【详解】解:(1)把代入中, 抛物线的解析式为: (2)联立一次函数与抛物线的解析式得: 整理得: x1+x2=4-3k,x1x2=-3,x12+x22=(4-3k)2+6=10,解得: (3)函数的对称轴为直线x=2,当m2时,当x=m时,y有最大值,=-(

20、m-2)2+3,解得m=,m=-,当m2时,当x=2时,y有最大值,=3,m=,综上所述,m的值为-或【考点】本题考查的是利用待定系数法求解抛物线的解析式,抛物线与轴的交点坐标,一元二次方程根与系数的关系,二次函数的增减性,掌握数形结合的方法与分类讨论是解题的关键.3、(1);(2)存在,点的坐标为或或【解析】【分析】(1)根据求出A,B,C的坐标,再由的面积是6得到关于a的方程即可求解;(2)根据得到点的纵坐标为3,分别代入解析式即可求解【详解】(1),令,则,令,即解得,由图象知:,解得:,(舍去);(2),.点的纵坐标为3,把代入得,解得或,把代入得,解得或,点的坐标为或或【考点】此题主

21、要考查二次函数的图像与性质,解题的关键是熟知待定系数法的应用4、 (1)见解析(2)(3)的值为1或-5【解析】【分析】()计算判别式的值,得到,即可判定;()计算二次函数的对称轴为:直线,利用当抛物线开口向上时,谁离对称轴远谁大判断即可;()先得到抛物线沿y轴翻折后的函数关系式,再利用对称轴与取值范围的位置分类讨论即可(1)证明:令,则不论为何实数,方程有两个不相等的实数根无论为何实数,该二次函数的图象与轴总有两个公共点(2)解:二次函数的对称轴为:直线,抛物线开口向上抛物线上的点离对称轴越远对应的函数值越大点到对称轴的距离为:1点到对称轴的距离为:2(3)解:抛物线沿轴翻折后的函数解析式为

22、该抛物线的对称轴为直线若,即,则当时,有最小值解得,若,即,则当时,有最小值-1不合题意,舍去若,则当时,有最小值解得,综上,的值为1或-5【考点】本题考查了抛物线与x轴的交点以及二次函数的最值问题,利用一元二次方程根的判别式判断抛物线与x轴的交点情况;熟练掌握二次函数的最值情况、根据对称轴与取值范围的位置关系来确定二次函数的最值是解本题的关键5、(1)b=,c=;(2);不存在,理由见解析【解析】【分析】(1)将A(-1,0),B(3,0)代入y=x2+bx+c,可求出答案;(2)设点P(m,m2-2m-3),则点Q(m,m),再利用二次函数的性质即可求解;分情况讨论,利用菱形的性质即可得出

23、结论【详解】解:(1)抛物线y=-x2+bx+c与x轴交于点A(-1,0),B(3,0),解得:,b=,c=;(2)由(1)得,抛物线的函数表达式为:y=x2,设点P(m,m2-2m-3),则点Q(m,m),0m3,PQ=m-( m2-2m-3)=-m2+3m+3=-+,-10,当时,PQ有最大值,最大值为;抛物线的函数表达式为:y=x2-2x-3,C(0,-3),OB=OC=3,由题意,点P(m,m2-2m-3),则点Q(m,m),PQOC,当OC为菱形的边,则PQ=OC=3,当点Q在点P上方时,PQ=,即,解得或,当时,点P与点O重合,菱形不存在,当时,点P与点B重合,此时BC=,菱形也不存在;当点Q在点P下方时,若点Q在第三象限,如图,COQ=45,根据菱形的性质COQ=POQ=45,则点P与点A重合,此时OA=1OC=3,菱形不存在,若点Q在第一象限,如图,同理,菱形不存在,综上,不存在以点O、C、P、Q为顶点的四边形是菱形【考点】本题是二次函数综合题,考查的是二次函数的性质,菱形的判定和性质等知识,其中,熟练掌握方程的思想方法和分类讨论的思想方法是解题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1