ImageVerifierCode 换一换
格式:DOCX , 页数:23 ,大小:436.31KB ,
资源ID:958285      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-958285-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(基础强化人教版九年级数学上册第二十二章二次函数专项测评练习题(解析版).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

基础强化人教版九年级数学上册第二十二章二次函数专项测评练习题(解析版).docx

1、人教版九年级数学上册第二十二章二次函数专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若函数y(a1)x2+2x+a21是二次函数,则()Aa1Ba1Ca1Da12、已知二次函数yax2bxc,其

2、中a0,若函数图象与x轴的两个交点均在负半轴,则下列判断错误的是()Aabc0Bb0Cc0Dbc03、如图所示,将一根长m的铁丝首尾相接围成矩形,则矩形的面积与其一边满足的函数关系是()A正比例函数关系B一次函数关系C二次函数关系D反比例函数关系4、已知在同一直角坐标系中,二次函数和反比例函数的图象如图所示,则一次函数的图象可能是()ABCD5、已知二次函数yax24ax+3与x轴交于A、B两点,与y轴交于点C,若SABC3,则a()ABC1D16、关于二次函数的最大值或最小值,下列说法正确的是()A有最大值4B有最小值4C有最大值6D有最小值67、在同一直角坐标系中,一次函数ykx+1与二次

3、函数yx2+k的大致图象可以是()ABCD8、关于的一元二次方程没有实数根,抛物线的顶点在()A第一象限B第二象限C第三象限D第四象限9、二次函数的图像如图所示,下列结论正确的是()ABCD有两个不相等的实数根10、若y=(m1)是二次函数,则m=()A1B7C1或7D以上都不对第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若某二次函数图象的形状与抛物线y3x2相同,且顶点坐标为(0,2),则它的表达式为_2、将抛物线向上平移()个单位长度,k,平移后的抛物线与双曲线y(x0)交于点P(p,q),M(1,n),则下列结论正确的是_(写出所有正确结论的序号) 0p1;

4、1p1; qn; q2kk3、如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加_m.4、抛物线的图像与轴交于、两点,若的坐标为,则点的坐标为_5、北仑梅山所产的草莓柔嫩多汁,芳香味美,深受消费者喜爱有一草莓种植大户,每天草莓的采摘量为300千克,当草莓的零售价为22元/千克时,刚好可以全部售完经调查发现,零售价每上涨1元,每天的销量就减少30千克,而剩余的草莓可由批发商以18元/千克的价格统一收购走,则当草莓零售价为_元时,该种植户一天的销售收入最大三、解答题(5小题,每小题10分,共计50分)1、如图,已知二次函数的图象经过A(2,0)、B(0,-6)两点(1)

5、求这个二次函数的解析式;(2)求这个二次函数的对称轴、顶点坐标;(3)设该二次函数的对称轴与x轴交于点C,连结BA、BC,求ABC的面积2、 “扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.(1)求与之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.3、某服装店以每件30元的价格购

6、进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T恤的销售单价提高元(1)服装店希望一个月内销售该种T恤能获得利润3360元,并且尽可能减少库存,问T恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T恤获得的利润最大?最大利润是多少元?4、某工厂生产并销售A,B两种型号车床共14台,生产并销售1台A型车床可以获利10万元;如果生产并销售不超过4台B型车床,则每台B型车床可以获利17万元,如果超出4台B型车床,则每超出1台,每台B型车床获利将均减少1万元设生产并销售B型车床台(1)当时,完

7、成以下两个问题:请补全下面的表格:A型B型车床数量/台_每台车床获利/万元10_若生产并销售B型车床比生产并销售A型车床获得的利润多70万元,问:生产并销售B型车床多少台?(2)当014时,设生产并销售A,B两种型号车床获得的总利润为W万元,如何分配生产并销售A,B两种车床的数量,使获得的总利润W最大?并求出最大利润5、某超市经销一种商品,每件成本为50元经市场调研,当该商品每件的销售价为60元时,每个月可销售300件,若每件的销售价每增加1元,则每个月的销售量将减少10件设该商品每件的销售价为x元,每个月的销售量为y件(1)求y与x的函数表达式;(2)当该商品每件的销售价为多少元时,每个月的

8、销售利润最大?最大利润是多少?-参考答案-一、单选题1、A【解析】【分析】利用二次函数定义进行解答即可【详解】解:由题意得:a10,解得:a1,故选:A【考点】本题主要考查了二次函数的定义,准确计算是解题的关键2、B【解析】【分析】根据函数图象与x轴的两个交点均在负半轴,可得抛物线的对称轴与x轴负半轴相交,可以判断a,b,c的符号,进而可得结论【详解】解:因为函数图象与x轴的两个交点均在负半轴,所以抛物线的对称轴与x轴负半轴相交,所以0,c0,因为a0,所以b0,因为c0,所以abc0,bc0,故选:B【考点】本题考查了二次函数图象与系数的关系,解决本题的关键是掌握二次函数图象与系数的关系3、

9、C【解析】【分析】设矩形的一边长为xm,求出矩形面积即可判断【详解】设矩形的一边长为xm,另一边长为(1-x)m,面积用y表示,故选择:C【考点】本题考查列函数关系式,并判断函数的类型,掌握列函数的方法和函数的特征是解题关键4、B【解析】【分析】根据反比例函数图象和二次函数图象位置可得出:a0,b0,c0,由此可得出,一次函数图象与y轴的交点在y轴的负半轴,对照四个选项即可解答【详解】由二次函数图象开口向下可知:a0,对称轴,由反比例函数图象分别在第一、三象限知:c0,一次函数的图象经过二,三,四象限,与y轴的交点在y轴的负半轴,对照四个选项,只有B选项符合一次函数的图象特征,故选:B【考点】

10、本题考查反比例函数的图象、二次函数的图象、一次函数的图象,熟练掌握函数图象与系数之间的关系是解答的关键5、D【解析】【分析】由根与系数的关系求得AB的长度,由抛物线解析式求得点C的坐标,然后根据列出关于的方程,解方程即可【详解】令,则ax24ax+30,x1+x24,x1x2,AB|x1x2|,令x0,y3,OC3,SABCABOC,故选:D【考点】本题考查了二次函数与坐标轴交点的问题,一元二次方程根与系数的关系,熟练掌握一元二次方程跟与系数的关系是解题关键6、D【解析】【分析】根据二次函数的解析式,得到a的值为2,图象开口向上,函数有最小值,根据定点坐标(4,6),即可得出函数的最小值【详解

11、】解:在二次函数中,a=20,顶点坐标为(4,6),函数有最小值为6故选:D【考点】本题主要考查了二次函数的最值问题,关键是根据二次函数的解析式确定a的符号和根据顶点坐标求出最值7、A【解析】【分析】二次函数图象与y轴交点的位置可确定k的正负,再利用一次函数图象与系数的关系可找出一次函数y=-kx+1经过的象限,对比后即可得出结论【详解】解:由yx2+k可知抛物线的开口向上,故B不合题意;二次函数yx2+k与y轴交于负半轴,则k0,k0,一次函数ykx+1的图象经过经过第一、二、三象限,A选项符合题意,C、D不符合题意;故选:A【考点】本题考查了二次函数的图象、一次函数图象以及一次函数图象与系

12、数的关系,根据二次函数的图象找出每个选项中k的正负是解题的关键8、B【解析】【分析】求出抛物线的对称轴-1,可知顶点在y轴的基侧,根据没有实数根,可知开口向上的与x轴没有交点,据此即可判断抛物线在第二象限【详解】解:抛物线的对称轴,可知抛物线的顶点在y轴左侧,又关于x的一元二次方程没有实数根,开口向上的与x轴没有交点,抛物线的顶点在第二象限故选:B【考点】本题考查了抛物线与x轴的交点个数与相应一元二次方程的解的个数的关系,熟悉二次函数的性质是解题的关键9、C【解析】【分析】观察图象:开口向下得到a0;对称轴在y轴的右侧得到a、b异号,则b0;抛物线与y轴的交点在x轴的上方得到c0,所以abc0

13、;由对称轴为x=1,可得2a+b=0;当x=-1时图象在x轴下方得到y=a-b+c0,结合b=-2a可得 3a+c0;观察图象可知抛物线的顶点为(1,3),可得方程有两个相等的实数根,据此对各选项进行判断即可.【详解】观察图象:开口向下得到a0;对称轴在y轴的右侧得到a、b异号,则b0;抛物线与y轴的交点在x轴的上方得到c0,所以abc0,故A选项错误;对称轴x=1,b=-2a,即2a+b=0,故B选项错误;当x=-1时, y=a-b+c0,又b=-2a, 3a+c0,故C选项正确;抛物线的顶点为(1,3),的解为x1=x2=1,即方程有两个相等的实数根,故D选项错误,故选C.【考点】本题考查

14、了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a0)的图象,当a0,开口向上,函数有最小值,a0,开口向下,函数有最大值;对称轴为直线x=,a与b同号,对称轴在y轴的左侧,a与b异号,对称轴在y轴的右侧;当c0,抛物线与y轴的交点在x轴的上方;当=b2-4ac0,抛物线与x轴有两个交点10、B【解析】【分析】令x的指数为2,系数不为0,列出方程与不等式解答即可【详解】由题意得:m2-6m-5=2;且m+10;解得m=7或-1;m-1,m=7,故选:B【考点】利用二次函数的定义,二次函数中自变量的指数是2;二次项的系数不为0二、填空题1、y3x22或y3x22【解析】【分析】根据

15、二次函数的图象特点即可分类求解【详解】二次函数的图象与抛物线y3x2的形状相同,说明它们的二次项系数的绝对值相等,故本题有两种可能,即y3x22或y3x22故答案为y3x22或y3x22【考点】此题主要考查二次函数的图象,解题的关键是熟知二次函数形状相同,二次项系数的绝对值相等2、#【解析】【分析】先画出函数图像,判断出当时抛物线和反比例函数图象上的点的纵坐标的关系,确定抛物线右支与反比例函数图象的交点个数,再利用抛物线的对称性与反比例函数的图象与性质直接判断即可【详解】解: 抛物线,该抛物线对称轴为,顶点坐标为(1,),将该抛物线向上平移()个单位长度,则顶点坐标为(1,),当时,反比例函数

16、图象上点的坐标为(1,),如图所示,抛物线平移后的顶点纵坐标即为m,反比例函数上横坐标为1的点的纵坐标即为s,m-s=,k,抛物线的右支与反比例函数图象只有一个交点,且该交点横坐标大于1;平移后的抛物线与双曲线y(x0)交于点P(p,q),M(1,n),点M为抛物线右支与反比例函数图象的交点,点P为抛物线左支与反比例函数图象的交点,由于反比例函数的图像在第一象限内y随x的增大而减小,且抛物线关于直线对称1p1;q2kk正确;故答案为:【考点】本题考查了抛物线与反比例函数的图像与性质,解题关键是弄清楚这两个交点分别位于抛物线的左支和右支上,再利用抛物线的轴对称性和反比例函数图像的增减性进行判断3

17、、【解析】【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把代入抛物线解析式得出水面宽度,即可得出答案【详解】建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为通过以上条件可设顶点式,其中可通过代入A点坐标 代入到抛物线解析式得出:所以抛物线解析式为 当水面下降2米,通过抛物线在图上的观察可转化为:当时,对应的抛物线上两点之间的距离,也就是直线与抛物线相交的两点之间的距离,可以通过把代入抛物线解析式得出: 解得:所以水面宽度增加到米,比原先

18、的宽度当然是增加了 故答案是: 【考点】考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键4、【解析】【分析】用二次函数的图象与x轴的交点关于对称轴对称解答即可【详解】解:抛物线的解析式y=a(x-2)2+c,抛物线的对称轴为直线x=2,抛物线y=a(x-2)2+c与x轴交于A、B两点,点A和点B关于直线x=2对称,点A的坐标为(1,0),点B的坐标为(3,0),故答案为(3,0)【考点】本题主要考查了抛物线与x轴的交点,解题的关键是求出抛物线的对称轴方程为直线x=25、25【解析】【分析】设草莓的零售价为x元/千克,销售收入为y元,由题意得y=30x2+1500x

19、11880,再根据二次函数的性质解答即可【详解】解:设草莓的零售价为x元/千克,销售收入为y元,由题意得,y=x30030(x22)+1830(x22)=30x2+1500x11880,当时,y最大,当草莓的零售价为25元/千克时,种植户一天的销售收入最大故答案为:25【考点】本题考查二次函数的实际应用,熟练掌握二次函数的性质是解题关键三、解答题1、(1);(2)对称轴为x=4;顶点坐标为(4,2);(3)6【解析】【分析】(1)二次函数图象经过A(2,0)、B(0,-6)两点,两点代入,算出b和c,即可得解析式(2)根据顶点坐标公式和对称轴公式即可求得;(3)先求出对称轴方程,写出C点的坐标

20、,计算出AC,然后由面积公式计算值【详解】解:(1)把A(2,0)、B(0,-6)代入得: 解得:这个二次函数的解析式为;(2),b=4,c=-6对称轴 ,顶点坐标为(4,2);(3)该抛物线对称轴为直线x=4, 点C的坐标为(4,0) AC=OC-OA=4-2=2,【考点】本题考查了待定系数法求二次函数的解析式,要会求二次函数的对称轴,会运用面积公式2、(1);(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】【分析】(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的

21、关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围【详解】(1)由题意得: 故y与x之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700240,解得x46,设利润为w=(x-30)y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,-100,x50时,w随x的增大而增大,x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-

22、10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=5,x1=55,x2=45,如图所示,由图象得:当45x55时,捐款后每天剩余利润不低于3600元【考点】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点3、(1)2元;(2)当服装店将销售单价50元时,得到最大利润是4000元【解析】【分析】(1)根据题意,通过列一元二次方程并求解,即可得到答案;(2)设利润为M元,结合题意,根据二次函数的性质,计算得利润最大值对应的的值,从而得到答案【详解】(

23、1)由题意列方程得:(x40-30) (300-10x)3360 解得:x12,x218要尽可能减少库存,x218不合题意,故舍去T恤的销售单价应提高2元;(2)设利润为M元,由题意可得: M(x40-30)(300-10x)-10x2200x3000 当x10时,M最大值4000元销售单价:401050元当服装店将销售单价50元时,得到最大利润是4000元【考点】本题考查了一元二次方程、二次函数的知识;解题的关键是熟练掌握一元二次方程、二次函数的性质,从而完成求解4、(1),;10台;(2)分配产销A型车床9台、B型车床5台;或产销A型车床8台、B型车床6台,此时可获得总利润最大值170万元

24、【解析】【分析】(1)由题意可知,生产并销售B型车床x台时,生产A型车床(14-x)台,当时,每台就要比17万元少()万元,所以每台获利,也就是()万元;根据题意可得根据题意:然后解方程即可;(2)当04时,W,当414时,W,分别求出两个范围内的最大值即可得到答案.【详解】解:(1)当时,每台就要比17万元少()万元所以每台获利,也就是()万元补全表格如下面:A型B型车床数量/台每台车床获利/万元10此时,由A型获得的利润是10()万元,由B型可获得利润为万元,根据题意:, ,014, ,即应产销B型车床10台;(2)当04时,当04A型B型车床数量/台每台车床获利/万元1017利润此时,W

25、,该函数值随着的增大而增大,当取最大值4时,W最大1168(万元);当414时,当414A型B型车床数量/台每台车床获利/万元10利润则W,当或时(均满足条件414),W达最大值W最大2170(万元),W最大2 W最大1, 应分配产销A型车床9台、B型车床5台;或产销A型车床8台、B型车床6台,此时可获得总利润最大值170万元【考点】本题主要考查了一元二次方程的实际应用,一次函数和二次函数的实际应用,解题的关键在于能够根据题意列出合适的方程或函数关系式求解.5、(1)y-10x+900;(2)每件销售价为70元时,获得最大利润;最大利润为4000元【解析】【分析】(1)根据等量关系“利润(售价进价)销量”列出函数表达式即可(2)根据(1)中列出函数关系式,配方后依据二次函数的性质求得利润最大值【详解】解:(1)根据题意,y30010(x60)=-10x+900,y与x的函数表达式为:y-10x+900;(2)设利润为w,由(1)知:w(x50)(-10x+900)=10x21400x45000,w10(x70)24000,每件销售价为70元时,获得最大利润;最大利润为4000元【考点】本题考查的是二次函数在实际生活中的应用此题难度不大,解题的关键是理解题意,找到等量关系,求得二次函数解析式

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1