ImageVerifierCode 换一换
格式:DOCX , 页数:29 ,大小:824.84KB ,
资源ID:958264      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-958264-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(基础强化人教版九年级数学上册第二十三章旋转章节训练试卷.docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

基础强化人教版九年级数学上册第二十三章旋转章节训练试卷.docx

1、人教版九年级数学上册第二十三章旋转章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,将绕点逆时针旋转得到,若且于点,则的度数为()ABCD2、如图,OAB中,AOB=60,OA=4,点B的坐标

2、为(6,0),将OAB绕点A逆时针旋转得到CAD,当点O的对应点C落在OB上时,点D的坐标为()A(7,3)B(7,5)C(5,5)D(5,3)3、如图,在方格纸中,将绕点按顺时针方向旋转90后得到,则下列四个图形中正确的是( )ABCD4、2020年7月20日,宁津县人民政府印发津县城市生活垃圾分类制度实施方案的通知,全面推行生活垃圾分类下列垃圾分类标志分别是厨余垃圾、有害垃圾、其他垃圾和可回收物,其中既是轴对称图形又是中心对称图形的是()ABCD5、某校举办了“送福迎新春,剪纸庆佳节”比赛以下参赛作品中,是中心对称图形的是()ABCD6、在平面直角坐标系中,点关于原点对称点在()A第一象限

3、B第二象限C第三象限D第四象限7、下列四个图形中,中心对称图形是()ABCD8、如图,正三角形ABC的边长为3,将ABC绕它的外心O逆时针旋转60得到ABC,则它们重叠部分的面积是()A2BCD9、如图,在平面直角坐标系xOy中,ABC顶点的横、纵坐标都是整数若将ABC以某点为旋转中心,旋转得到ABC,则旋转中心的坐标是()A(1,1)B(1,1)C(0,0)D(1,2)10、把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A30B90C120D180第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,正方形ABCD的边长为6,点E在

4、边CD上以点A为中心,把ADE顺时针旋转90至ABF的位置若DE2,则FE_2、如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A,B,C的坐标分别为,是关于轴的对称图形,将绕点逆时针旋转180,点的对应点为M,则点M的坐标为_3、在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是_4、如图,在ABC中,CAB45,若CAB25,则旋转角的度数为 _5、两块等腰直角三角形纸片AOB和COD按图1所示放置,直角顶点重合在点O处,AB13,CD7保持纸片AOB不动,将纸片COD绕点O逆时针旋转a(090),如图2所示当BD与CD在同一直线上(如图3)时,则ABC的

5、面积为_三、解答题(5小题,每小题10分,共计50分)1、图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段的端点均在格点上,分别按要求画出图形(1)在图1中画出等腰三角形,且点C在格点上(画出一个即可)(2)在图2中画出以为边的菱形,且点D,E均在格点上2、如图,在矩形ABCD中,对角线AC的中点为O,点G,H在对角线AC上,AGCH,直线GH绕点O逆时针旋转角,与边AB、CD分别相交于点E、F(点E不与点A、B重合)(1)求证:四边形EHFG是平行四边形;(2)若90,AB9,AD3,求AE的长3、如图,在等腰ABC中,点D为直线BC上一动点(点D不B、

6、C重合),以AD为边向右侧作正方形ADEF,连接CF【猜想】如图,当点D在线段BC上时,直接写出CF、BC、CD三条线段的数量关系【探究】如图,当点D在线段BC的延长线上时,判断CF、BC,CD三条线段的数量关系,并说明理由【应用】如图,当点D在线段BC的反向延长线上时,点A、F分别在直线BC两侧,AEDF交点为点O连接CO,若,则 4、如图,在边长为1的小正方形组成的网格中,ABC的顶点均在格点上,请按要求完成下列各题(1)以原点O为对称中心作ABC的中心对称图形,得到A1B1C1,请画出A1B1C1,并直接写出点A1,B1,C1的坐标;(2)求A1C1的长5、在RtABC中,ABC90,A

7、,O为AC的中点,将点O沿BC翻折得到点,将ABC绕点顺时针旋转,使点B与C重合,旋转后得到ECF(1)如图1,旋转角为 (用含的式子表示)(2)如图2,连BE,BF,点M为BE的中点,连接OM,BFC的度数为 (用含的式子表示)试探究OM与BF之间的关系(3)如图3,若30,请直接写出的值为 -参考答案-一、单选题1、C【解析】【分析】由旋转的性质可得BAD=55,E=ACB=70,由直角三角形的性质可得DAC=20,即可求解【详解】解:将ABC绕点A逆时针旋转55得ADE,BAD=55,E=ACB=70,ADBC,DAC=20,BAC=BAD+DAC=75故选C【考点】本题考查了旋转的性质

8、,掌握旋转的性质是本题的关键2、A【解析】【分析】如图,过点D作DEx轴于点E证明AOC是等边三角形,解直角三角形求出DE,CE,可得结论【详解】解:如图,过点D作DEx轴于点EB(6,0),OB=6,由旋转的性质可知AO=AC=4,OB=CD=6,ACD=AOB=60,AOC=60,AOC是等边三角形,OC=OA=4,ACO=60,DCE=60,CE=CD=3,DE=3,OE=OC+CE=4+3=7,D(7,3),故选:A【考点】本题考查了旋转变换,含30度角的直角三角形的性质,勾股定理,等边三角形的判定和性质等知识,解题的关键是掌握旋转变换的性质3、B【解析】【分析】根据绕点按顺时针方向旋

9、转90逐项分析即可【详解】A、是由关于过B点与OB垂直的直线对称得到,故A选项不符合题意;B、是由绕点按顺时针方向旋转90后得到,故B选项符合题意;C、与对应点发生了变化,故C选项不符合题意;D、是由绕点按逆时针方向旋转90后得到,故D选项不符合题意故选:B【考点】本题考查旋转变换解题的关键是弄清旋转的方向和旋转的度数4、B【解析】【分析】根据轴对称图形和中心对称图形的概念去判断即可【详解】A、既不是轴对称图形也不是中心对称图形,故不满足题意;B、是轴对称图形也是中心对称图形,故满足题意;C、既不是轴对称图形也不是中心对称图形,故不满足题意;D、既不是轴对称图形也不是中心对称图形,故不满足题意

10、;故选:B【考点】本题考查了轴对称图形和中心对称图形,关键是紧扣轴对称图形和中心对称图形的概念5、D【解析】【详解】解:选项A,B,C中的图形不是中心对称图形,选项D中的图形是中心对称图形,故选D【考点】本题考查的是中心对称图形的识别,中心对称图形的定义:把一个图形绕某点旋转后能够与自身重合,则这个图形是中心对称图形,掌握“中心对称图形的定义”是解本题的关键.6、D【解析】【分析】先依据,即可得出点P所在的象限,再根据两个点关于原点对称时,它们的坐标符号相反,即可得出结论【详解】解:,点在第二象限,点关于原点对称点在第四象限.故选D【考点】本题主要考查了关于原点对称的两个点的坐标特征,明确关于

11、原点对称的两个点的横、纵坐标均互为相反数是解答的关键7、D【解析】【分析】根据中心对称图形的概念结合各图形的特点求解【详解】解:A、不是中心对称图形,不符合题意; B、不是中心对称图形,不符合题意; C、不是中心对称图形,不符合题意; D、是中心对称图形,符合题意 故选:D【考点】本题考查了中心对称图形与轴对称图形的概念判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合8、C【解析】【分析】根据重合部分是正六边形,连接O和正六边形的各个顶点,所得的三角形都是全等的等边三角形,据此即可求解【详解】解:作AMBC于M,如图:重合部分是正六边形,连接O和正六边形的各个顶点,所得的三角形

12、都是全等的等边三角形ABC是等边三角形,AMBC,ABBC3,BMCMBC,BAM30,AMBM,ABC的面积BCAM3,重叠部分的面积ABC的面积;故选:C【考点】本题考查了三角形的外心、等边三角形的性质以及旋转的性质,理解连接O和正六边形的各个顶点,所得的三角形都为全等的等边三角形是关键9、A【解析】【分析】对应点连线的垂直平分线的交点即为旋转中心,然后直接写成坐标即可【详解】解:如图点O即为旋转中心,坐标为O(1,1) 故选:A【考点】本题主要考查了旋转中心的确定方法,熟练掌握对应点连线的垂直平分线的交点即为旋转中心是解题的关键10、C【解析】【分析】根据图形的对称性,用360除以3计算

13、即可得解【详解】解:3603=120,旋转的角度是120的整数倍,旋转的角度至少是120故选C【考点】本题考查了旋转对称图形,仔细观察图形求出旋转角是120的整数倍是解题的关键二、填空题1、【解析】【分析】由旋转的性质可得BF=DE=2,D=ABF=90,在直角EFC中,由勾股定理可求解【详解】解:把ADE顺时针旋转90得ABF,BF=DE=2,D=ABF=90,ABC+ABF=180,点F,点B,点C共线,在直角EFC中,EC=6-2=4,CF=BC+BF=8根据勾股定理得:EF=,故答案为:【考点】本题考查了旋转的性质,正方形的性质,勾股定理,灵活运用这些性质解决问题是本题的关键2、【解析

14、】【分析】根据题意,画出旋转后图形,即可求解【详解】解:如图,将绕点逆时针旋转180,所以点的对应点为M的坐标为故答案为:【考点】本题考查平面直角坐标系内图形的对称,旋转,解题关键是理解对称旋转的含义,并结合网格解题3、(3,2)【解析】【分析】根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,即可得出答案【详解】解:根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,点(3,2)关于原点对称的点的坐标是(3,2),故答案为(3,2)【考点】本题主要考查了平面直角坐标系内两点关于原点对称横纵坐标互为相反数,难度较小4、20#20度【解析】【分析】根据题干所给角度即可直接求出的大小,即

15、旋转角的大小【详解】解:,旋转角的度数为,故答案为:20【考点】本题考查旋转的性质根据题意找出即为旋转角是解答本题的关键5、30【解析】【分析】设AO与BC的交点为点G,根据等腰直角三角形的性质证AOCBOD,进而得出ABC是直角三角形,设ACx,BC=x+7,由勾股定理求出x,再计算ABC的面积即可【详解】解:设AO与BC的交点为点G,AOBCOD90,AOCDOB,在AOC和BOD中,AOCBOD(SAS),ACBD,CAODBO,DBOOGB90,OGBAGC,CAOAGC90,ACG90,CGAC,设ACx,则BD=AC=x,BC=x+7,BD、CD在同一直线上,BDAC,ABC是直角

16、三角形,AC2BC2AB2,,解得x=5,即AC=5,BC=5+7=12,在直角三角形ABC中,S= ,故答案为:30【考点】本题考查旋转的性质、全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的性质解决问题三、解答题1、 (1)见解析(2)见解析【解析】【分析】利用轴对称图形、中心对称图形的特点画出符合条件的图形即可;(1)答案不唯一(2)【考点】本题考查了轴对称图形、中心对称图形的特点,熟练掌握特殊三角形与四边形的性质才能准确画出符合条件的图形2、(1)详见解析;(2)AE5【解析】【分析】(1)由“ASA”可证COFAOE,可得

17、EOFO,且GOHO,可证四边形EHFG是平行四边形;(2)由题意可得EF垂直平分AC,可得AECE,由勾股定理可求AE的长【详解】证明:(1)对角线AC的中点为OAOCO,且AGCHGOHO四边形ABCD是矩形ADBC,CDAB,CDABDCACAB,且COAO,FOCEOACOFAOE(ASA)FOEO,且GOHO四边形EHFG是平行四边形;(2)如图,连接CE90,EFAC,且AOCOEF是AC的垂直平分线,AECE,在RtBCE中,CE2BC2+BE2,AE2(9AE)2+9,AE5【考点】此题主要考查特殊平行四边形的证明与性质,解题的关键是熟知矩形的性质及勾股定理的运用.3、【猜想】

18、CD= BC- CF,理由见解析;【探究】CF= BC+ CD,理由见解析;【应用】【解析】【分析】【猜想】 利用SAS证明BADCAF,得出BD= CF,然后根据线段的和差关系可得结论;【探究】利用SAS证明BADCAF,得出BD= CF,然后根据线段的和差关系可得出结论;【应用】 利用SAS证明BADCAF,得出BD= CF,ACF=ABD = 135,求出DCF= 90,在RtDCF中利用勾股定理求出DF,利用直角三角形的斜边中线的性质可得结论【详解】解:【猜想】CD= BC- CF,理由如下:BAC=90,AB=AC,ABC=ACB=45,四边形ADEF是正方形,AD= AF,DAF=

19、 90=BAC,BAD=FAC,在BAD和CAF中, ,BADCAF (SAS),BD= CF,CD= BC- BD,CD= BC- CF:解:【探究】CF= BC+ CD,理由如下:BAC= 90,AB= AC,ABC=ACB=45,四边形 ADEF是正方形, AD= AF,DAF= 90,BAD=BAC +DAC,CAF=DAF+DAC,在BAD和CAF中, ,BADCAF (SAS),BD= CF,BD= BCCD,CF= BC+CD;解:【应用】BAC= 90,AB= AC,ABC=ACB=45,四边形ADEF是正方形,AD= AF,DAF= 90,BAC=DAF,BAD=CAF,在B

20、AD和CAF中,BADCAF (SAS),BD=CF,ACF=ABD= 180- 45= 135,,FCD=ACF-ACB = 90,FCD为直角三角形, ,CD= BC+ BD, CD = BC+CF= 2+1=3, ,正方形ADEF中,O为DF中点, ,故答案为: 【考点】本题是四边形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,正方形的性质,直角三角形斜边中线的性质等知识点,解题的关键是能够综合运用运用有关的知识解决问题4、(1)见解析,点A1,B1,C1的坐标分别为(1,1),(1,4),(3,2);(2)【解析】【分析】(1)根据关于原点中心对称的特点画出图形,即可

21、求解;(2)利用勾股定理,即可求解【详解】(1)如图,A1B1C1为所作, 根据题意得:点A1,B1,C1的坐标分别为(1, 1),(1,4),(3,2);(2)A1C1的长为【考点】本题主要考查了作图中心对称和勾股定理,属于常考题型,熟练掌握相关知识是解题的关键5、(1);(2);(3)【解析】【分析】(1)连接OB,由,O为BC的中点,得到,则,再由旋转的性质可得,由此求解即可;(2)连接,由(1)可知(因为也是旋转角),由旋转的性质可得,则,可以得到,再由可以得到,由此即可求解;连接OB,OE延长OM交EF于N,由得,由旋转的性质可得,然后证明,得到,则,再证明OBMNEM得到,从而推出

22、MN为BFE的中位线,得到,则;(3)连接与BF交于H,由,可得,由含30度角的直角三角形的性质可以得到,再由勾股定理可以得到,由此即可得到答案【详解】解:(1)如图所示,连接OB,O为BC的中点,将点O沿BC翻折得到点,由旋转的性质可得,旋转角为,故答案为:;(2)如图所示,连接,由(1)可知(因为也是旋转角),由旋转的性质可得,故答案为:;如图所示,连接OB,OE延长OM交EF于N,由得,由旋转的性质可得,M为BE的中点,在OBM和NEM中,OBMNEM(SAS),N为EF的中点,MN为BFE的中位线,;(3)如图所示,连接与BF交于H,故答案为:【考点】本题主要考查了旋转的性质,等腰三角形的性质与判定,直角三角形斜边上的中线,三角形中位线定理,含30度角的直角三角形的性质,勾股定理,平行线的性质与判定等等,解题的关键在于能够熟练掌握旋转的性质

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1