1、人教版九年级数学上册第二十三章旋转专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列所述图形中,既是轴对称图形又是中心对称图形的是()A等腰三角形B等边三角形C菱形D平行四边形2、有下列说法:平
2、行四边形具有四边形的所有性质:平行四边形是中心对称图形:平行四边形的任一条对角线可把平行四边形分成两个全等的三角形;平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形其中正确说法的序号是()ABCD3、下列图形中既是轴对称图形,也是中心对称图形的是()ABCD4、若点P(2,)与点Q(,)关于原点对称,则mn的值分别为()ABC1D55、如图,在钝角中,将绕点顺时针旋转得到,点,的对应点分别为,连接则下列结论一定正确的是()ABCD平分6、如图,在中, 将绕点逆时针旋转得到,其中点与 点是对应点,且点在同一条直线上;则的长为()ABCD7、下列四个图形中,中心对称图形是()ABCD8
3、、将抛物线先绕坐标原点旋转,再向右平移个单位长度,所得抛物线的解析式为()ABCD9、下列图形中,是中心对称图形但不是轴对称图形的是()ABCD10、如图,在正方形ABCD中,将边BC绕点B逆时针旋转至,连接,若,则线段BC的长度为()A4B5CD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在菱形中,将菱形绕点逆时针方向旋转,对应得到菱形,点在上,与交于点,则的长是_2、如图,在菱形OBCD中,OB1,相邻两内角之比为1:2,将菱形OBCD绕顶点O顺时针旋转90,得到菱形OBCD视为一次旋转,则菱形旋转45次后点C的坐标为_3、若点与点关于原点成中心对称,则_
4、4、将图1剪成若干小块,再图2中进行拼接平移后能够得到、中的_5、如图,将等边绕顶点A顺时针方向旋转,使边AB与AC重合得,的中点E的对应点为F,则的度数是_三、解答题(5小题,每小题10分,共计50分)1、【模型建立】(1)如图1,在正方形中,点E是对角线上一点,连接,求证:【模型应用】(2)如图2,在正方形中,点E是对角线上一点,连接,将绕点E逆时针旋转,交的延长线于点F,连接当时,求的长【模型迁移】(3)如图3,在菱形中,点E是对角线上一点,连接,将绕点E逆时针旋转,交的延长线于点F,连接,与交于点G当时,判断线段与的数量关系,并说明理由2、如图,平面直角坐标系中,ABC的三个顶点的坐标
5、分别为A(1,2),B(2,4),C(4,1)(1)在平面直角坐标系中画出与ABC关于点P(1,0)成中心对称的ABC,并分别写出点A,B,C的坐标;(2)如果点M(a,b)是ABC边上(不与A,B,C重合)任意一点,请写出在ABC上与点M对应的点M的坐标3、问题情境:数学活动课上,老师让同学们以“三角形的旋转”为主题开展数学活动,ABC和DEC是两个全等的直角三角形纸片,其中ACBDCE90,BE30,ABDE4解决问题:(1)如图1,智慧小组将DEC绕点C顺时针旋转,发现当点D恰好落在AB边上时,DEAC,请你帮他们证明这个结论;(2)缜密小组在智慧小组的基础上继续探究,当DEC绕点C继续
6、旋转到如图2所示的位置时,连接AE、AD、BD,他们提出SBDCSAEC,请你帮他们验证这一结论是否正确,并说明理由4、如图,点A(a,0),B(0,b),且a、b满足(a2)2+|4b8|0(1)如图1,求a,b的值;(2)如图2,点C在线段AB上(不与A、B重合)移动,ABBD,且COD45,猜想线段AC、BD、CD之间的数量关系并证明你的结论;(3)如图3,若P为x轴正半轴上异于原点O和点A的一个动点,连接PB,将线段PB绕点P顺时针旋转90至PE,直线AE交y轴于点Q,当P点在x轴上移动时,线段BE和线段BQ中哪一条线段长为定值,并求出该定值5、如图,D 是 的边 延长线上一点,连接
7、,把 绕点 顺时针旋转 60恰好得到 ,其中,是对应点,若 ,求 的度数-参考答案-一、单选题1、C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解【详解】解:A、等腰三角形是轴对称图形,不是中心对称图形,故本选项错误;B、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;C、菱形既是轴对称图形,又是中心对称图形,故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形,故本选项错误故选C【考点】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合2、D【解析】【
8、分析】根据平行四边形的性质、中心对称图形的定义和全等三角形的判定进行逐一判定即可【详解】解:平行四边形是四边形的一种,平行四边形具有四边形的所有性质,故正确:平行四边形绕其对角线的交点旋转180度能够与自身重合,平行四边形是中心对称图形,故正确:四边形ABCD是平行四边形,AD=BC,CD=AB,ADC=CBAADCCBA(SAS)同理可以证明ABDCDB平行四边形的任一条对角线可把平行四边形分成两个全等的三角形,故正确;四边形ABCD是平行四边形,OA=OC,OD=OB,平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形,故正确故选D【考点】本题主要考查了中心对称图形的定义,平行四
9、边形的性质,全等三角形的判定,三角形中线把面积分成相同的两部分等等,解题的关键在于能够熟练掌握相关知识进行求解3、B【解析】【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;B、既是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不符合题意;D、不是轴对称图形,是中心对称图形,故此选项不符合题意故选:B【考点】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合4、B【解析
10、】【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数解答【详解】解:P(2,-n)与点Q(-m,-3)关于原点对称,2=-(-m),-n=-(-3),m=2,n=-3, 故选:B【考点】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律5、D【解析】【分析】根据旋转可知CABEAD,CAE=70,结合BAC=35,可知BAE=35,则可证得CABEAB,即可作答【详解】根据旋转的性质可知CABEAD,CAE=70,BAE=CAE-CAB=70-35=35,AC=AE,AB=AD,BC=DE,ABC=ADE,故A、B错误,CAB=EAB,AC=AE,AB=AB,CAB
11、EAB,EABEADBEA=DEA,AE平分BED,故D正确,AD+BE=AB+BEAE=AC,故C错误,故选:D【考点】本题考查了旋转的性质和全等三角形的判定与性质,求出BAE=35是解答本题的关键6、A【解析】【分析】根据旋转的性质说明ACC是等腰直角三角形,且CAC=90,理由勾股定理求出CC值,最后利用BC=CC-CB即可【详解】解:根据旋转的性质可知AC=AC,ACB=ACB=45,BC=BC=1,ACC是等腰直角三角形,且CAC=90,CC=4,BC=4-1=3故选:A【考点】本题主要考查了旋转的性质、勾股定理,在解决旋转问题时,要借助旋转的性质找到旋转角和旋转后对应的量7、D【解
12、析】【分析】根据中心对称图形的概念结合各图形的特点求解【详解】解:A、不是中心对称图形,不符合题意; B、不是中心对称图形,不符合题意; C、不是中心对称图形,不符合题意; D、是中心对称图形,符合题意 故选:D【考点】本题考查了中心对称图形与轴对称图形的概念判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合8、C【解析】【分析】先根据点绕坐标原点旋转的坐标变换规律、待定系数法求出旋转后的抛物线的解析式,再根据二次函数的图象平移的规律即可得【详解】将抛物线的顶点式为则其与x轴的交点坐标为,顶点坐标为点绕坐标原点旋转的坐标变换规律:横、纵坐标均变为相反数则绕坐标原点旋转后,所得抛物
13、线与x轴的交点坐标为,顶点坐标为设旋转后所得抛物线为将点代入得:,解得即旋转后所得抛物线为则再向右平移个单位长度,所得抛物线的解析式为即故选:C【考点】本题考查了点绕坐标原点旋转的坐标变换规律、待定系数法求二次函数解析式、二次函数的图象平移的规律,熟练掌握坐标旋转变换规律和二次函数的图象平移规律是解题关键9、B【解析】【分析】根据中心对称图形和轴对称图形的定义判断即可【详解】解:A中的图形旋转180后不能与原图形重合,A中的图象不是中心对称图形,选项A不正确;B中的图形旋转180后能与原图形重合,B中的图形是中心对称图形,但不是轴对称图形,选项B正确;C中的图形旋转180后能与原图形重合,C中
14、的图形是中心对称图形,也是轴对称图形,选项C不正确;D中的图形旋转180后不能与原图形重合,D中的图形不是中心对称图形, 选项D不正确;故选:B【考点】本题考查了轴对称图形和中心对称图形的定义,熟练掌握轴对称图形和中心对称图形的定义是解题的关键10、D【解析】【分析】根据旋转的性质,可知BCBC取点O为线段CC的中点,并连接BO根据等腰三角形三线合一的性质、正方形的性质及直角三角形的性质,可证得RtOBC RtCCD,从而证得OCCD,BOC C,再利用勾股定理即可求解【详解】解:如图,取点O为线段CC的中点,并连接BO依题意得,BCBCBOC CBOC90在正方形ABCD中,BCCD,BCD
15、90OCBCCD90又C CD 90CDCCCD90OCBCDC在RtOBC和RtCCD中RtOBC RtCCD(AAS)OCCD2C C2 OC 224BOC C4在RtBOC中BC故选:D【考点】本题考查了旋转的性质、正方形的性质、等腰三角形的性质、直角三角形的性质、全等三角形的判定和性质及勾股定理的运用等知识,解题的关键是辅助线的添加二、填空题1、【解析】【分析】连接交于,由菱形的性质得出,由直角三角形的性质求出,得出,由旋转的性质得:,得出,证出,由直角三角形的性质得出,即可得出结果【详解】解:连接交于,如图所示:四边形是菱形,由旋转的性质得:,四边形是菱形,;故答案为【考点】考核知识
16、点:菱形性质,旋转性质.解直角三角形是关键.2、(,)【解析】【分析】先求出菱形的内角度数,过作轴于点,在中,利用特殊角度数及边长求解和长,则点坐标可求,由,得出菱形4次旋转一周,4次一个循环,由,得出菱形旋转45次后点与点重合,即可得出答案【详解】解:四边形OBCD是菱形,相邻两内角之比为1:2,CBOD60,DOBC120根据旋转性质可得OBC120,CBH60过C作CHy轴于点H,如图所示:在RtCBH中,BC1,坐标为,360904,菱形4次旋转一周,4次一个循环,454111,菱形旋转45次后点与点重合,坐标为,;故答案为:,【考点】本题主要考查了菱形的性质,旋转的性质,以及坐标与图
17、形变化,解决此类问题要熟知旋转后的不变量,得出规律是解题的关键3、【解析】【分析】根据关于原点对称的点的特征求出的值,计算即可【详解】解:点与点关于原点成中心对称,故答案为:【考点】本题考查了关于原点对称,熟知关于原点对称的点横纵坐标均互为相反数是解题的关键4、#【解析】【详解】解:根据图形1可得剪成若干小块,再图2中进行拼接平移后能够得到、,不能拼成,故答案为:5、【解析】【分析】根据等边三角形的性质以及旋转的性质得出旋转角,进而得出EAF的度数【详解】将等边ABC绕顶点A顺时针方向旋转,使边AB与AC重合得ACD,BC的中点E的对应点为F,旋转角为60,E,F是对应点,则EAF的度数为:6
18、0故答案为:60【考点】此题主要考查了等边三角形的性质以及旋转的性质,得出旋转角的度数是解题关键三、解答题1、(1)证明见解析;(2);(3),理由见解析【解析】【分析】(1)利用SAS证明即可;(2)先证,再利用勾股定理求解;(3)先证,再利用等边三角形的判定性质证明即可【详解】(1)证明:如图1中,四边形是正方形,在和中,;(2)解:如图2中,设交于点J由(1)知,EF是绕点E逆时针旋转得到,在中,;(3)解:结论:理由:如图3中,四边形是菱形,在和中,),是绕点E逆时针旋转得到的,是等边三角形,【考点】本题考查了正方形的性质,等边三角形的判定和性质,图形的旋转变换,全等三角形的判定和性质
19、,勾股定理,正确理解图形的相关性质是解本题的关键2、(1)ABC见解析,A(3,2),B(4,4),C(6,1);(2)M(2a,b)【解析】【分析】(1)分别作出A,B,C的对应点A、B、C,然后顺次连接可得ABC,再根据所作图形写出坐标即可(2)利用中点坐标公式计算即可【详解】解:(1)ABC如图所示,A(3,2),B(4,4),C(6,1);(2)设M(m,n),则有,m2a,nb,M(2a,b)【考点】本题考查作图中心对称,解题的关键是熟练掌握中心对称的性质,正确找出对应点位置3、(1)证明见解析;(2)正确,理由见解析【解析】【分析】(1)如图1中,根据旋转的性质可得ACCD,然后求
20、出ACD是等边三角形,根据等边三角形的性质可得ACD60,然后根据内错角相等,两直线平行进行解答;(2)如图2中,作DMBC于M,ANEC交EC的延长线于N根据旋转的性质可得BCCE,ACCD,再求出ACNDCM,然后利用“角角边”证明ACN和DCM全等,根据全等三角形对应边相等可得ANDM,然后利用等底等高的三角形的面积相等证明【详解】解:(1)如图1中,DEC绕点C旋转点D恰好落在AB边上,ACCD,BAC90B903060,ACD是等边三角形,ACD60,又CDEBAC60,ACDCDE,DEAC;(2)结论正确,理由如下:如图2中,作DMBC于M,ANEC交EC的延长线于NDEC是由A
21、BC绕点C旋转得到,BCCE,ACCD,ACNBCN90,DCMBCN1809090,ACNDCM,在ACN和DCM中,ACNDCM(AAS),ANDM,BDC的面积和AEC的面积相等(等底等高的三角形的面积相等),即SBDCSAEC【考点】本题属于几何变换综合题,主要考查了全等三角形的判定与性质,等边三角形的判定与性质,旋转的性质的综合应用,添加恰当辅助线构造全等三角形是解题的关键4、 (1)2(2)CD=BD+AC理由见解析(3)BQ是定值,【解析】【分析】(1)根据非负数的性质得到a-2=0,4b-8=0,求得a=2,b=2,得到OA=2,OB=2,于是得到结果; (2)证明:将AOC绕
22、点O逆时针旋转90得到OBF根据已知条件得到DBF=180,由DOC=45,AOB=90,同时代的BOD+AOC=45,求出FOD=BOF+BOD=BOD+AOC=45,推出ODFODC,根据全等三角形的性质得到DC=DF=DB+BF=DB+DC; (3)BQ是定值,作EFOA于F,在FE上截取PF=FD,由BAO=PDF=45,得到PAB=PDE=135,根据余角的性质得到BPA=PED,推出PBAEPD,根据全等三角形的性质得到AP=ED,于是得到FD+ED=PF+AP即:FE=FA,根据等腰直角三角形的性质得到结论(1)解:(a2)2+|4b8|0,a-2=0,4b-8=0, a=2,b
23、=2, A(2,0)、B(0,2), OA=2,OB=2, AOB的面积=;(2)证明:如图2,将AOC绕点O逆时针旋转90得到OBF,而 OAC=OBF=OBA=45,DBA=90, DBF=180, DOC=45,AOB=90, BOD+AOC=45, FOD=BOF+BOD=BOD+AOC=45, 在ODF与ODC中, :ODFODC,DC=DF,DF=BD+BF,CD=BD+AC(3)BQ是定值,BE明显不是定值,理由如下:作EFOA于F,在FE上截取FD=PF, BAO=PDF=45, PAB=PDE=135, BPA+EPF=90,EPF+PED=90, BPA=PED,在PBA与EPD中, PBAEPD(AAS), AP=ED, FD+ED=PF+AP, 即:FE=FA, FEA=FAE=45, QAO=EAF=OQA=45, OA=OQ=2, BQ=4为定值【考点】本题考查了全等三角形的判定和性质,坐标与图形的性质,等腰直角三角形的判定与性质,旋转的性质,三角形面积的计算,非负数的性质,正确的作出辅助线是解题的关键5、42【解析】【分析】根据旋转的性质得到,再根据计算解题即可【详解】解:把绕点A顺时针旋转60恰好得到, ,故答案为:【考点】本题考查旋转、角的和差等知识,是基础考点,掌握相关知识是解题关键