1、人教版九年级数学上册第二十三章旋转专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知正方形的边长为4,以点C为圆心,2为半径作圆,P是上的任意一点,将点P绕点D按逆时针方向旋转,得到点Q,
2、连接,则的最大值是()A6BCD2、2022年新年贺词中提到“人不负青山,青山定不负人”,下列四个有关环保的图形中,是轴对称图形,但不是中心对称图形的是()ABCD3、如图,ABC是等边三角形,D为BC边上的点,ABD经旋转后到达ACE的位置,那么旋转角为()A75B60C45D154、下列图形中,既是轴对称图形,又是中心对称图形的是()ABCD5、如图,已知点O(0,0),P(1,2),将线段PO绕点P按顺时针方向以每秒90的速度旋转,则第19秒时,点O的对应点坐标为()A(0,0)B(3,1)C(1,3)D(2,4)6、如图,与关于成中心对称,不一定成立的结论是()ABCD7、在平面直角坐
3、标系中,点关于原点对称的点的坐标是()ABCD8、如图,将ABC绕点A逆时针旋转70得到ADE,点B、C的对应点分别为D、E,当点B、C、D、P在同一条直线上时,则PDE的度数为()A55B70C80D1109、如图,在中,将绕点顺时针旋转得到,点A、B的对应点分别是,点是边的中点,连接,则下列结论错误的是()AB,CD10、在方格纸中,选择标有序号中的一个小正方形涂黑,与图中阴影部分构成中心对称图形该小正方形的序号是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、点 P(2,3)关于原点对称的点的坐标是_2、如图,将的斜边AB绕点A顺时针旋转得到AE,直角
4、边AC绕点A逆时针旋转得到AF,连结EF若,且,则_3、一副三角板如图放置,将三角板ADE绕点A逆时针旋转,使得三角板ADE的一边所在的直线与BC垂直,则的度数为_.4、如图,在正方形ABCD中,顶点A,B,C,D在坐标轴上,且,以AB为边构造菱形ABEF(点E在x轴正半轴上),将菱形ABEF与正方形ABCD组成的图形绕点O逆时针旋转,每次旋转90,则第27次旋转结束时,点的坐标为_5、如图,把ABC绕着点A逆时针旋转90得到ADE,连接BE,CD,M是BE的中点,若AM=,则CD的长为_三、解答题(5小题,每小题10分,共计50分)1、已知:如图,在矩形ABCD中,垂足是E,点F是点关于AB
5、的对称点,连接AF、BF(1)直接求出:_;_;(2)若将沿着射线BD方向平移,设平移的距离为(平移距离指点B沿BD方向所经过的线段长度),点F分别平移到线段AB、AD上时,求出相应的m的值(3)如图,将绕点B顺时针旋转一个角,记旋转中的为,在旋转过程中,设所在的直线与直线AD交于点P,与直线BD交于点是否存在这样的P、Q两点,使为等腰三角形?若存在,直接写出此时DQ的长;若不存在,请说明理由2、如图,AOB中,OA=OB=6,将AOB绕点O逆时针旋转得到CODOC与AB交于点G,CD分别交OB、AB于点E、F(1)A与D的数量关系是:A_D;(2)求证:AOGDOE;(3)当A,O,D三点共
6、线时,恰好OBCD,求此时CD的长3、如图,点在射线上,如果绕点按逆时针方向旋转到,那么点的位置可以用表示(1)按上述表示方法,若,则点的位置可以表示为_;(2)在(1)的条件下,已知点的位置用表示,连接、求证:4、如图1,在ABC中,BAC90,ABAC,点D在边AC上,CDDE,且CDDE,连接BE,取BE的中点F,连接DF(1)请直接写出ADF的度数及线段AD与DF的数量关系;(2)将图1中的CDE绕点C按逆时针旋转,如图2,(1)中ADF的度数及线段AD与DF的数量关系是否仍然成立?请说明理由;如图3,连接AF,若AC3,CD1,求SADF的取值范围5、如图,等腰三角形中,作于点,将线
7、段绕着点顺时针旋转角后得到线段,连接(1)求证:;(2)延长线段,交线段于点求的度数(用含有的式子表示) -参考答案-一、单选题1、A【解析】【分析】连接CP,AQ,以A为圆心,以AQ为半径画圆,延长BA交于E根据正方形的性质,旋转的性质,角的和差关系,全等三角形的判定定理和性质求出AQ的长度,根据三角形三边关系确定当点Q与点E重合时,BQ取得最大值,最后根据线段的和差关系计算即可【详解】解:如下图所示,连接CP,AQ,以A为圆心,以AQ为半径画圆,延长BA交于E正方形ABCD的边长为4,的半径为2,AD=CD=AB=4,ADC=90,CP=2点P绕点D按逆时针方向旋转90得到点Q,QDP=9
8、0,QD=PDADC=QDPADC-QDC=QDP-QDC,即ADQ=CDPAQ=CP=2AE=AQ=2P是上任意一点,点Q在上移动当点Q与点E重合时,BQ取得最大值为BEBE=AE+AB=6故选:A【考点】本题考查正方形的性质,旋转的性质,角的和差关系,全等三角形的判定定理和性质,三角形三边关系,线段的和差关系,综合应用这些知识点是解题关键2、D【解析】【分析】轴对称图形:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形中心对称图形:在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心
9、对称根据轴对称图形、和中心对称图形的概念,即可完成解题【详解】解:根据轴对称和中心对称的概念,选项A、B、C、D中,是轴对称图形的是B、D,是中心对称图形的是B故选:D【考点】本题主要轴对称图形、中心对称图形的概念,熟练掌握知识点是解答本题的关键3、B【解析】【分析】根据题意可知旋转角为,根据等边三角形的性质即可求解【详解】解:ABD经旋转后到达ACE的位置,ABC是等边三角形,旋转角为,故选B【考点】本题考查了等边三角形的性质,找旋转角,找到旋转前后对应的线段所产生的夹角即为旋转是解题的关键4、C【解析】【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解【详解】解:A是轴对
10、称图形,不是中心对称图形,故本选项不符合题意;B既不是轴对称图形,又不是中心对称图形,故本选项不符合题意;C既是轴对称图形,又是中心对称图形,故本选项符合题意;D不是轴对称图形,是中心对称图形,故本选项不符合题意故选:C【考点】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合5、B【解析】【分析】依据线段PO绕点P按顺时针方向以每秒90的速度旋转,即可得到19秒后点O旋转到点O的位置,再根据全等三角形的对应边相等,即可得到点O的对应点O的坐标【详解】解:如图所示,线段PO绕点P按顺时针方向以每
11、秒90的速度旋转,每4秒一个循环,1944+3,390270,19秒后点O旋转到点O的位置,OPO90,如图所示,过P作MNy轴于点M,过O作ONMN于点N,则OMPPNO90,POMOPN,OPPO,在OPM和PON中,OPMPON(AAS),ONPM1,PNOM2,MN1+23,点O离x轴的距离为2-11,点O的坐标为(3,1),故选:B【考点】本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标6、D【解析】【分析】根据中心对称的性质即可判断【详解】解:对应点的连线被对称中心平分,A,B正确;成中心对称图形的两个图形是全等形,那么对应线段相
12、等,C正确;和不是对应角,D错误故选:D【考点】本题考查成中心对称两个图形的性质:对应点的连线被对称中心平分;成中心对称图形的两个图形是全等形7、C【解析】【分析】根据关于原点对称的点的坐标特点解答【详解】解:点P(-3,-5)关于原点对称的点的坐标是(3,5),故选:C【考点】本题考查的是关于原点的对称的点的坐标,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数8、B【解析】【分析】首先根据旋转的性质可得,AB=AD,据此即可求得,据此即可求得【详解】解:将ABC绕点A逆时针旋转70得到ADE,AB=AD,又点B、C、D、P在同
13、一条直线上,故选:B【考点】本题考查了旋转的性质,等边对等角的应用,三角形内角和定理,熟练掌握和运用旋转的性质是解决本题的关键9、D【解析】【分析】根据旋转的性质可判断A;根据直角三角形的性质、三角形外角的性质、平行线的判定方法可判断B;根据平行四边形的判定与性质以及全等三角形的判定与性质可判断C;利用等腰三角形的性质和含30角的直角三角形的性质可判断D【详解】A将ABC绕点C顺时针旋转60得到DEC,BCE=ACD=60,CB=CE,BCE是等边三角形,BE=BC,故A正确; B点F是边AC中点,CF=BF=AF=AC,BCA=30,BA=AC,BF=AB=AF=CF,FCB=FBC=30,
14、延长BF交CE于点H,则BHE=HBC+BCH=90,BHE=DEC=90,BF/ED,AB=DE,BF=DE,故B正确CBFED,BF=DE,四边形BEDF是平行四边形,BC=BE=DF, AB=CF, BC=DF,AC=CD,ABCCFD,故C正确;DACB=30, BCE=60,FCG=30,FG=CG,CG=2FGDCE=CDG=30,DG=CG,DG=2FG故D错误故选D【考点】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,含30角的直角边等于斜边的一半,以及平行四边形的判定与性质等知识,综合性较强,正确理解旋转性质是解题的关键10、B【解析】【分析】直接利用
15、中心对称图形的性质得出答案即可【详解】解:如图,把标有序号的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形,故选B【考点】本题考查了利用旋转设计图案和中心对称图形的定义,要知道,一个图形绕端点旋转180所形成的图形叫中心对称图形二、填空题1、(-2,3)【解析】【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数【详解】解:已知点P(2,-3),则点P关于原点对称的点的坐标是(-2,3),故答案为:(-2,3)【考点】本题主要考查了关于原点的对称点的性质,正确把握横纵坐标的关系是解题关键2、【解析】【分析】由
16、旋转的性质可得,由勾股定理可求EF的长【详解】解:由旋转的性质可得,且,故答案为【考点】本题考查了旋转的性质,勾股定理,灵活运用旋转的性质是本题的关键3、15或60.【解析】【分析】分情况讨论:DEBC,ADBC,然后分别计算的度数即可解答.【详解】解:如下图,当DEBC时,如下图,CFD60,旋转角为:CAD60-4515;(2)当ADBC时,如下图,旋转角为:CAD90-3060;【考点】本题考查了垂直的定义和旋转的性质,熟练掌握并准确分析是解题的关键.4、(2,-2)【解析】【分析】先求出点F坐标,由题意可得每8次旋转一个循环,即可求解【详解】解:点B(2,0),OB=2,OA=2,AB
17、=OA=2,四边形ABEF是菱形,AF=AB=2,点F(2,2),由题意可得每4次旋转一个循环,274=63,点F27的坐标与点F3的坐标一样,在第四象限,如下图,过F3作F3Hy轴,F3Hy轴,AFy轴,OAF=F3HO=90,AOF+HOF3=90,OFOF3,AOF+AFO=90,AFO=HOF3,OAFF3HO,HF3=OA=2,OH=AF=2,F3(2,-2),点F27的坐标(2,-2),故答案为:(2,-2)【考点】本题考查了菱形的性质,全等三角形的性质与判定及旋转的性质,找到旋转的规律是本题的关键5、【解析】【分析】延长AM到F,使AM=MF,连接BF,证AEMFBM,得AE=F
18、B,AEM=FBM,ABC绕着点A逆时针旋转90得到ADE,得AB=AD,CAE=BAD=90,再证AC=BF,CAD=ABF,得BFAACD,即可得答案【详解】解: 如上图:延长AM到F,使AM=MF,M是BE的中点,BM=EM,AME=FMB,AEMFBM,AE=FB,AEM=FBM,ABC绕着点A逆时针旋转90得到ADE,AB=AD,AC= AE,CAE=BAD=90,AC=BF,CAD=90-EAD,ABF=ABM+FBM=ABM+AEM=180-BAE=180-(BAD+EAD)=180-90-EAD=90-EAD,CAD=ABF,在BFA和ACD中,BFAACD, FA=CD,AM
19、=,CD= FA= 2 AM =2,故答案为:2【考点】本题考查旋转的性质,三角形全等的判定与性质,解题的关键是延长AM到F,使AM=MF,证BFAACD三、解答题1、(1);(2);(3)存在,DQ的长度分别为4或或或【解析】【分析】(1)利用矩形性质、勾股定理及三角形面积公式求解;(2)依题意画出图形,如图所示,利用平移性质,确定图形中的等腰三角形,分别画出图形,对于各种情形分别进行计算即可;(3)在旋转过程中,等腰由4种情形分别进行计算即可【详解】解:(1)四边形ABCD是矩形,在中,由勾股定理得:,点F是点E关于AB的对称点,在中,由勾股定理得:,故答案为:;设平移中的三角形为,如图所
20、示:由对称点性质可知,由平移性质可知,当点落在AB上时,即;当点落在AD上时,又易知,为等腰三角形,即综上所述,当点F分别平移到线段AB、AD上时,相应的m的值分别为,;存在理由如下:在旋转过程中,等腰依次有以下4种情形:如图所示,点Q落在BD延长线上,且,则,在中,由勾股定理得:;如图所示,点Q落在BD上,且,则,则此时点落在BC边上,在中,由勾股定理得:,即:,解得:,;如图所示,点Q落在BD上,且,则,在中,由勾股定理得:,;如图所示,点Q落在BD上,且,则,综上所述,存在4组符合条件的点P、点Q,使为等腰三角形;DQ的长度分别为4或或或【考点】本题是四边形综合题目,主要考查了矩形的性质
21、、轴对称的性质、平移的性质、旋转的性质、勾股定理、等腰三角形的性质等知识点;第()问难度很大,解题关键是画出各种旋转图形,依题意进行分类讨论2、 (1)=(2)证明见解析(3),详见解析【解析】【分析】(1)根据旋转性质及等腰三角形性质即可得答案;(2)由旋转性质知AOB=DOC,可证得AOG=DOE,结合OA=OB及(1)中结论,得证;(3)分两种情况讨论,设A=x,先利用三角形内角和求出x的值,再借助勾股定理求出CD的长度即可(1)解:由旋转知,A=C,B=D,OA=OB,OC=OD,A=B=C=DA=D,故答案为:=(2)证明:由旋转知,OA=OC,OB=OD,AOB=COD,AOBBO
22、C=CODBOC,即AOG=DOE,OA=OB,OA=OB=OC=OD,又A=D,AOGDOE(3)解:分两种情况讨论,如图所示,设A=B=C=D=x,则DOB=2x,OBCD,OED=90,x+2x=90,解得:x=30,即D=30,在RtODE中,OE=3,由勾股定理得:DE=,OC=OD,OECD,CD=2DE=当D与A重合时,如图所示,同理,得:CD=综上所述,当A,O,D三点共线时,OBCD,此时CD的长为【考点】本题考查了旋转的性质、等腰三角形性质、全等三角形的判定、勾股定理等知识点,解题关键是利用旋转性质得到边、角的关系3、 (1)(3,37)(2)见解析【解析】【分析】(1)根
23、据点的位置定义,即可得出答案;(2)画出图形,证明AOABOA(SAS),即可由全等三角形的性质,得出结论(1)解:由题意,得A(a,n),a=3,n=37,A(3,37),故答案为:(3,37);(2)证明:如图,B(3,74),AOA=37,AOB=74,OA= OB=3,AOB=AOB-AOA=74-37=37,OA=OA,AOABOA(SAS),AA=AB【考点】本题考查全等三角形的判定与性质,新定义,旋转的性质,熟练掌握全等三角形的判定与性质是解题的关键4、 (1)ADF=45,AD=DF;(2)成立,理由见解析;1SADF4.【解析】【分析】(1)延长DF交AB于H,连接AF,先证
24、明DEFHBF,得BH=CD,再证明ADH为等腰直角三角形,利用三线合一及等腰直角三角形边的关系即可得到结论;(2)过B作DE的平行线交DF延长线于H,连接AH、AF,先证明DEFHBF,延长ED交BC于M,再证明ACD=ABH,得ACDABH,得AD=AH,等量代换可得DAH=90,即ADH为等腰直角三角形,利用三线合一及等腰直角三角形边的关系即可得到结论;先确定D点的轨迹,求出AD的最大值和最小值,代入SADF=求解即可(1)解:ADF=45,AD=DF,理由如下:延长DF交AB于H,连接AF,EDC=BAC=90,DEAB,ABF=FED,F是BE中点,BF=EF,又BFH=DFE,DE
25、FHBF,BH=DE,HF=FD,DE=CD,AB=AC,BH=CD,AH=AD,ADH为等腰直角三角形,ADF=45,又HF=FD,AFDH,FAD=ADF=45,即ADF为等腰直角三角形,AD=DF;(2)解:结论仍然成立,ADF=45,AD=DF,理由如下:过B作DE的平行线交DF延长线于H,连接AH、AF,如图所示,则FED=FBH,FHB=EFD,F是BE中点,BF=EF,DEFHBF,BH=DE,HF=FD,DE=CD,BH=CD,延长ED交BC于M,BHEM,EDC=90,HBC+DCB=DMC+DCB=90,又AB=AC,BAC=90,ABC=45,HBA+DCB=45,ACD
26、+DCB=45,HBA=ACD,ACDABH,AD=AH,BAH=CAD,CAD+DAB=BAH+DAB=90,即HAD=90,ADH=45,HF=DF,AFDF,即ADF为等腰直角三角形,AD=DF由知,SADF=DF2=AD2,由旋转知,当A、C、D共线时,且D在A、C之间时,AD取最小值为31=2,当A、C、D共线时,且C在A、D之间时,AD取最大值为3+1=4,1SADF4【考点】本题考查了等腰直角三角形性质及判定、全等三角形判定及性质、勾股定理等知识点构造全等三角形及将面积的最值转化为线段的最值是解题关键遇到题干中有“中点”时,采用平行线构造出对顶三角形全等是常用辅助线5、(1)见解析;(2)【解析】【分析】(1)根据“边角边”证,得到即可;(2)由(1)得,再根据三角形内角和证明即可【详解】证明: 线段绕点顺时针旋转角得到线段,在与中,(2)解: , ,又,【考点】本题考查了旋转的性质、全等三角形的判定与性质和三角形内角和定理,解题关键是熟练运用全等三角形的判定与性质进行证明