1、人教版九年级数学上册第二十三章旋转专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在下列面点烘焙模具中,其图案是中心对称图形的是()ABCD2、将按如图方式放在平面直角坐标系中,其中,顶点的坐标为
2、,将绕原点逆时针旋转,每次旋转60,则第2023次旋转结束时,点对应点的坐标为()ABCD3、如图,平面直角坐标系中,点在第一象限,点在轴的正半轴上,将绕点逆时针旋转,点的对应点的坐标是()ABCD4、如图,在中,将绕点顺时针旋转度得到,当点的对应点恰好落在边上时,则的长为()A1.6B1.8C2D2.65、在图中,将方格纸中的图形绕O点顺时针旋转90得到的图形是()ABCD6、如图,在矩形中,是矩形的对称中心,点、分别在边、上,连接、,若,则的值为()ABCD7、如图,已知点O(0,0),P(1,2),将线段PO绕点P按顺时针方向以每秒90的速度旋转,则第19秒时,点O的对应点坐标为()A(
3、0,0)B(3,1)C(1,3)D(2,4)8、如图,将ABC绕点B顺时针旋转50得DBE,点C的对应点恰好落在AB的延长线上,连接AD,下列结论不一定成立的是()AAB=DBBCBD=80CABD=EDABCDBE9、如图,将正方形绕点A顺时针旋转,得到正方形,的延长线交于点H,则的大小为()ABCD10、下列图形中,是中心对称图形的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中点M(2,4)关于原点对称的点的坐标为 _2、如图,已知点的坐标是,点的坐标是,菱形的对角线交于坐标原点,则点的坐标是_3、将点绕原点O顺时针旋转得到点,则点
4、落在第_象限4、如图:为五个等圆的圆心,且在一条直线上,请在图中画一条直线,将这五个圆分成面积相等的两个部分,并说明这条直线经过的两点是_5、在平面直角坐标系中,直角如图放置,点A的坐标为,每一次将绕点O逆时针旋转90,第一次旋转后得到,第二次旋转后得到,依次类推,则点的坐标为_三、解答题(5小题,每小题10分,共计50分)1、如图,方格中,每个小正方形的边长都是单位1,ABC的位置如图(1)画出将ABC向右平移2个单位得到的A1B1C1;(2)画出将ABC绕点O顺时针方向旋转90得到的A2B2C2;(3)写出C2点的坐标2、在RtABC中,ACB90,AC2,ABC30,点A关于直线BC的对
5、称点为A,连接AB,点P为直线BC上的动点(不与点B重合),连接AP,将线段AP绕点P逆时针旋转60,得到线段PD,连接AD,BD【问题发现】(1)如图1,当点D在直线BC上时,线段BP与AD的数量关系为,DAB;【拓展探究】(2)如图2,当点P在BC的延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;【问题解决】(3)当BDA30时,求线段AP的长度3、如图,先将绕点顺时针旋转得到,再将线段绕点顺时针旋转得到,连接、,且(1)若求证:、三点共线;求的长;(2)若,点在边上,求线段的最小值4、在RtABC中,BAC90,ABAC,动点D在直线BC上(不与点B,C重合)
6、,连接AD,把AD绕点A逆时针旋转90得到AE,连接DE,F,G分别是DE,CD的中点,连接FG【特例感知】(1)如图1,当点D是BC的中点时,FG与BD的数量关系是,FG与直线BC的位置关系是;【猜想论证】(2)当点D在线段BC上且不是BC的中点时,(1)中的结论是否仍然成立?请在图2中补全图形;若成立,请给出证明;若不成立,请说明理由【拓展应用】(3)若ABAC=,其他条件不变,连接BF、CF当ACF是等边三角形时,请直接写出BDF的面积5、图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段的端点均在格点上,分别按要求画出图形(1)在图1中画出等腰三角形
7、,且点C在格点上(画出一个即可)(2)在图2中画出以为边的菱形,且点D,E均在格点上-参考答案-一、单选题1、D【解析】【分析】根据中心对称图形的性质得出图形旋转180,与原图形能够完全重合的图形是中心对称图形,分别判断得出即可【详解】解:A.不是中心对称图形,不符合题意;B.不是中心对称图形,不符合题意;C.不是中心对称图形,不符合题意;D.是中心对称图形,符合题意;故选:D【考点】此题主要考查了中心对称图形的性质,根据中心对称图形的定义判断图形是解决问题的关键2、A【解析】【分析】根据旋转性质,可知6次旋转为1个循环,故先需要求出前6次循环对应的A点坐标即可,利用全等三角形性质求出第一次旋
8、转对应的A点坐标,之后第2次旋转,根据图形位置以及长,即可求出,第3、4、5次分别利用关于原点中心对称,即可求出,最后一次和A点重合,再判断第2023次属于循环中的第1次,最后即可得出答案【详解】解:由题意可知:6次旋转为1个循环,故只需要求出前6次循环对应的A点坐标即可第一次旋转时:过点作轴的垂线,垂足为,如下图所示:由的坐标为可知:,在中, 由旋转性质可知:, , 在与中: , 此时点对应坐标为,当第二次旋转时,如下图所示:此时A点对应点的坐标为当第3次旋转时,第3次的点A对应点与A点中心对称,故坐标为当第4次旋转时,第4次的点A对应点与第1次旋转的A点对应点中心对称,故坐标为当第5次旋转
9、时,第5次的点A对应点与第2次旋转的A点对应点中心对称,故坐标为第6次旋转时,与A点重合故前6次旋转,点A对应点的坐标分别为:、由于,故第2023次旋转时,A点的对应点为故选:A【考点】本题主要是考查了旋转性质、中心对称求点坐标、三角形全等以及点的坐标特征,熟练利用条件证明全等三角形,;通过旋转和中心对称求解对应点坐标,是求解该题的关键3、B【解析】【分析】如图,作轴于解直角三角形求出,即可【详解】解:如图,作轴于 由题意:,故选:B【考点】本题考查坐标与图形变化旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题4、A【解析】【分析】由将ABC绕点A按顺时针旋转一
10、定角度得到ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由B=60,可证得ABD是等边三角形,继而可得BD=AB=2,则可求得答案【详解】由旋转的性质可知,为等边三角形,故选A【考点】此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB5、B【解析】【分析】根据旋转的性质,找出图中三角形的关键处(旋转中心)按顺时针方向旋转90后的形状即可选择答案【详解】根据旋转的性质可知,绕O点顺时针旋转90得到的图形是 故选B【考点】本题考查了旋转的性质旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变6、D【解析】【分析】连接AC,BD,过点O作于点,交于点,利用勾股定
11、理求得的长即可解题【详解】解:如图,连接AC,BD,过点O作于点,交于点,四边形ABCD是矩形,同理可得故选:D【考点】本题考查中心对称、矩形的性质、勾股定理等知识,学会添加辅助线,构造直角三角形是解题关键7、B【解析】【分析】依据线段PO绕点P按顺时针方向以每秒90的速度旋转,即可得到19秒后点O旋转到点O的位置,再根据全等三角形的对应边相等,即可得到点O的对应点O的坐标【详解】解:如图所示,线段PO绕点P按顺时针方向以每秒90的速度旋转,每4秒一个循环,1944+3,390270,19秒后点O旋转到点O的位置,OPO90,如图所示,过P作MNy轴于点M,过O作ONMN于点N,则OMPPNO
12、90,POMOPN,OPPO,在OPM和PON中,OPMPON(AAS),ONPM1,PNOM2,MN1+23,点O离x轴的距离为2-11,点O的坐标为(3,1),故选:B【考点】本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标8、C【解析】【分析】利用旋转的性质得ABCDBE ,BA=BD,BC=BE,ABD=CBE=50,C=E,再由A、B、E三点共线,由平角定义求出CBD=80,由三角形外角性质判断出ABDE【详解】解:ABC绕点B顺时针旋转50得DBE, AB=DB,BC=BE,ABD=CBE=50,ABCDBE ,故选项A、D一定成
13、立;点C的对应点E恰好落在AB的延长线上,ABD+CBE+CBD =180,.CBD=180-50-50=80,故选项B一定成立;又 ABD=E+BDE,ABDE,故选项C错误,故选C【考点】本题主要考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等9、B【解析】【分析】根据旋转的性质,求得BAE=38,根据正方形的性质,求得DBA=45,ABH=135,利用四边形的内角和定理计算即可【详解】根据旋转的性质,得BAE=38,四边形ABCD是正方形,DBA=45,ABH=135,四边形AEFG是正方形,E=90,DHE=360-90-38
14、-135=97,故选B【考点】本题考查了旋转的性质,正方形的性质,四边形的内角和定理,熟练掌握正方形的性质,旋转的性质是解题的关键10、C【解析】【分析】根据中心对称图形的概念对各选项分析判断即可得解【详解】解:A、不是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项不合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不合题意故选:C【考点】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合二、填空题1、【解析】【分析】根据在平面直角坐标系中,若两点关于原点对称,则这两点的横纵坐标均互为相反数,即可求解【详解】解:点M(
15、2,4)关于原点对称的点的坐标为 故答案为:【考点】本题主要考查了两点关于坐标原点对称的特征,熟练掌握在平面直角坐标系中,若两点关于原点对称,则这两点的横纵坐标均互为相反数是解题的关键2、【解析】【分析】根据菱形具有的平行四边形基本性质,对角线互相平分,且交点为坐标原点,则,关于原点对称, 因此在直角坐标系中两点的坐标关于原点对称,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数便可得.【详解】四边形 是菱形,对角线相交于坐标原点 根据平行四边形对角线互相平分的性质,和; 和均关于原点对称 根据直角坐标系上一点 关于原点对称的点为可得已知点的坐标是 ,则点的坐标是 .故答案为:.【考点】本题
16、旨在考查菱形的基本性质及直角坐标系中关于原点对称点的坐标的知识点,熟练理解掌握该知识点为解题的关键.3、四【解析】【分析】画出图形,利用图象解决问题即可【详解】解:如图,所以在第四象限,故答案为:四【考点】本题考查坐标与图形变化旋转,解题的关键是正确画出图形,属于中考常考题型4、D与【解析】【分析】平分5个圆,那么每份应是2.5,由过平行四边形中心的任意直线都能平分平行四边形的面积,应先作出平行四边形的中心,再把第5个圆平分即可【详解】点D恰好是平行四边形的中心,则这里过D和O3即可故答案为:D和O3【考点】本题考查了作图-应用与设计作图以及平行四边形的判定和性质,正确的作出图形是解题的关键5
17、、(,)【解析】【分析】由题意可得,(,),根据题意,每旋转四次,点B就又回到第一象限,用可知点在第三象限,即可得到答案【详解】在直角中,点A的坐标为,(,)由已知可得:第一次旋转后,如图,在第二象限,(,)第二次旋转后,在第三象限,(,)第三次旋转后,在第四象限,(,)第四次旋转后,在第一象限,(,)如此,旋转4次一循环点在第三象限,(,)故答案为:(,)【考点】本题考查了旋转变换,涉及含30度角的直角三角形,确定旋转几次一循环是解题的关键三、解答题1、(1)见解析;(2)见解析;(3)C2(2,3)【解析】【分析】(1)根据平移的方法将三点向右平移2个单位得到,然后将三个点连起来即可;(2
18、)根据旋转的方法将三点绕点O顺时针方向旋转90得到,然后将三个点连起来即可;(3)根据(2)中描出的点C2的位置即可写出C2点的坐标【详解】解:(1)如图所示,A1B1C1即为所求,(2)如图所示,A2B2C2即为所求,(3)由(2)中点C2的位置可得,C2点的坐标为(2,3)【考点】此题考查了平面直角坐标系中的平移和旋转变换作图以及求点的坐标,解题的关键是熟练掌握平移和旋转变换的方法2、(1)相等;90;(2)成立,证明见解析;(3)线段AP的长度为4或4【解析】【分析】(1)首先推知AP=PB,PC=AP,根据全等三角形的性质即可得到结论;(2)如图,连接AD,根据等边三角形的性质得到AB
19、=AA,由旋转的性质得到AP=DP,APD=60,推出AAB是等边三角形,得到PA=PD=AD,根据全等三角形的性质即可得到结论;(3)如图,由(2)知,BAD=90根据已知条件得到D在BA的延长线上,由旋转的性质得到AP=DP,APD=60,推出AAB是等边三角形,得到PA=PD=AD,于是得到结论;如图,由(2)知,BAD=90,根据旋转的性质得到AP=DP,APD=60,求得PA=PD=AD,PAD=BAA=60,根据全等三角形的性质得到PB=DA=4,根据勾股定理即可得到结论【详解】(1)在RtABC中,ACB90,AC2,ABC30,点A关于直线BC的对称点为A,则ABCABC30,
20、ABABABA60ABA是等边三角形,AAB60,APD60,BAPABPPAC30,APPB,PCAP,APPD,PCPD,PCCD,ACAC,ACPACD,APCADC(SAS),DAAP,CADPAC30,PBDA,BAD60+3090,故答案为:相等;90;(2)成立,证明如下:如图,连接AD,AAB是等边三角形,ABAA,由旋转的性质可得:APDP,APD60,APD是等边三角形,PAPDAD,BAPBAC+CAP,AADPAD+CAP,BACPAD,BAPAAD,在BAP与AAD中,BAPAAD(SAS),BPAD,AADABC30BAA60,DABBAA+AAD90;(3)如图,
21、当点P在BC的延长线上时,由(2)知,BAD90BDA30,DBA60,D在BA的延长线上,由旋转的性质可得:APDP,APD60,APD是等边三角形,PAPDAD,BA4,BD8,APAD4; 如图,当点P在CB的延长线上时,由(2)知,BAD90,BDA30,BA4,DA4,由旋转的性质可得:APDP,APD60,APD是等边三角形,PAPDAD,PADBAA60,PABDAA,ABAA,ABPAAD(SAS),PBDA4,AC2,BC2,CP6,AP4综上所述,线段AP的长度为4或4【考点】本题属于几何变换综合题,考查了全等三角形的判定和性质、等边三角形的判定和性质,正确的作出图形是解题
22、的关键3、 (1)证明见详解;BG= 4(2)线段PD的最小值为2+ 2【解析】【分析】(1)由旋转的性质可得ACD= 90=BCE, AB= DE,BC= CE, AC= CD,ABC=DEC= 135,由等腰三角形的性质可得BEC = 45 =CBE,可证BEC +CED= 180,可得结论;通过证明四边形ABDG是矩形,可得AD= BG,由等腰直角三角形的性质可求解;(2)由垂线段最短可得当PDAB时,PD的长度有最小值,先证点P,点E,点D三点共线,由勾股定理可求DE的长,由正方形的性质可得BC= PE= 2,即可求解.(1)证明:如图,连接AG,将ABC绕点C顺时针旋转90得到DEC
23、,ABCDEC,ACD= 90=BCE,AB=DE,BC=CE,AC=CD,ABC =DEC= 135BEC= 45=CBE,BEC+CED=180 B、E、D三点共线;将线段DE绕点D顺时针旋转90得到DGDE= DG,EDG = 90AB= DE= DG,ABE=ABC-CBE=90,ABE+EDG = 180,AB/DG,四边形ABDG是平行四边形,又BDG = 90四边形ABDG是矩形, AD= BG,AC= CD=4,ACD= 90, AD=AC= 4,BG= 4;(2)如图:点P在边AB上,当PDAB时,PD的长度有最小值由旋转的性质可得:ABC=CED=BCE= 90,BC/ D
24、E,ABC+BPD= 180,DP/ BC,点P,点E,点D三点共线,AC= 2CE,BC=CE= 2,又ABC=BPE=BCE= 90,四边形BPEC是正方形,BC= PE= 2,CD= AC=4, CE= 2,CED = 90, DE=DP=2+2,线段PD的最小值为2+ 2【考点】本题是几何变换综合题,考查了旋转的性质,全等三角形的性质,等腰三角形的性质,矩形的判定和性质,勾股定理等知识,灵活运用这些性质解决问题是解题的关键4、(1)FG=BD,FGBC;(2)补全图形见解析;结论仍然成立,理由见解析;(3)BDF的面积为或【解析】【分析】(1)根据等腰直角三角形的性质以及中位线定理可得
25、结果;(2)根据题意画出图形即可;根据旋转的性质证明ABDACE,结合中位线定理证明结论;(3)分两种情况进行讨论:当点D在点B的左侧时;当点D在点C的右侧时,分别画出图形结合等边三角形的性质解答【详解】(1)BAC90,ABAC,点D是BC的中点,ADBC,ADBDCD,ABCACB45,F,G分别是DE,CD的中点,FGAD,FGAD,FGBD,FGBC,故答案为:FGBD,FGBC;(2)补全图形如图所示;结论仍然成立,理由如下:如图2,连接CE,把AD绕点A逆时针旋转90得到AE,BACDAE90,ADAE,BADCAE,又ABAC,ABDACE(SAS),CEBD,ACEBACB45
26、,DCE90,F,G分别是DE,CD的中点,FGCEBD,FGCE,FGBC;(3)当点D在点B的左侧时,如图31中,作AMBC于M,连接FG,BAC90,ABAC,AMBC,BC2,BMCMAMBC1,BAMCAM45,ADAE,DAE90,点F是DE中点,EAFCAM45,AFFDEF,AFC是等边三角形,AFACFC,FACAFCACF60,CAE15BAD,ADMABCBAD30,DMAM,BDDMBM,由(2)的结论可得:FGBC,FGBD,BDF的面积;当点D在点C的右侧时,如图32中,作AMBC于M,连接FG,BAC90,ABAC,AMBC,BC2,BMCMAMBC1,BAMCA
27、M45,ADAE,DAE90,点F是DE中点,EAFCAM45,AFFDEF,DAF45,AFC是等边三角形,AFACFC,FACAFCACF60,CADCAFDAF15,ADMACBCAD30,DMAM,BDDM+BM1,由(2)的结论可得:FGBC,FGBD,BDF的面积综上所述:BDF的面积为或【考点】本题考查了等腰三角形的性质,旋转的性质,等边三角形的性质以及全等三角形的判定与性质,熟练掌握以上性质定理是解本题的关键5、 (1)见解析(2)见解析【解析】【分析】利用轴对称图形、中心对称图形的特点画出符合条件的图形即可;(1)答案不唯一(2)【考点】本题考查了轴对称图形、中心对称图形的特点,熟练掌握特殊三角形与四边形的性质才能准确画出符合条件的图形